skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Interaction Renormalization and Validity of Kinetic Equations for Turbulent States
We consider turbulence of waves interacting weakly via four-wave scattering (sea waves, plasma waves, spin waves, etc.). In the first order in the interaction, a closed kinetic equation has stationary solutions describing turbulent cascades. We show that the higher-order terms generally diverge both at small (IR) and large (UV) wave numbers for direct cascades. The analysis up to the third order identifies the most UV-divergent terms. To gain qualitative analytic control, we sum a subset of the most UV divergent terms, to all orders, giving a perturbation theory free from UV divergence, showing that turbulence becomes independent of the dissipation scale when it goes to zero. On the contrary, the IR divergence (present in the majority of cases) makes the effective coupling parametrically larger than the naive estimate and growing with the pumping scale L (similar to anomalous scaling in fluid turbulence). In such cases, the kinetic equation does not describe wave turbulence even of arbitrarily small level at a given k if k L is large enough that is the cascade is sufficiently long. We show that the character of strong turbulence is determined by whether the effective four-wave interaction is enhanced or suppressed by collective effects. The enhancement possibly signals that strong turbulence is dominated by multiwave bound states (solitons, shocks, cusps), similar to confinement in quantum chromodynamics. Published by the American Physical Society2024  more » « less
Award ID(s):
2209116
PAR ID:
10611585
Author(s) / Creator(s):
;
Publisher / Repository:
APS
Date Published:
Journal Name:
Physical Review Letters
Volume:
133
Issue:
24
ISSN:
0031-9007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We investigate various properties of extremal dyonic static black holes in Einstein-Maxwell-Dilaton-Axion theory. We obtain a simple first-order ordinary differential equation for the black hole mass in terms of its electric and magnetic charges, which we can solve explicitly for certain special values of the scalar couplings. For one such case we also construct new dyonic black hole solutions, making use of the presence of an enhanced S L ( 2 , R ) symmetry. Finally, we investigate the structure of long range forces and binding energies between nonequivalent extremal black holes. For certain special cases, we can identify regions of parameter space where the force is always attractive or repulsive. Unlike in the case without an axion, the force and binding energies between distinct black holes are not always correlated with each other. Our work is motivated in part by the question of whether long range forces between nonidentical states can potentially encode information about UV constraints on low-energy physics. Published by the American Physical Society2025 
    more » « less
  2. We present a complete reevaluation of the irreducible two-loop vacuum-polarization correction to the photon propagator in quantum electrodynamics, i.e. with an electron-positron pair in the fermion propagators. The integration is carried out by reducing the integrations to a limited set of master integrals, which are calculated using integration-by-parts identities. Dimensional regularization is used in D = 4 2 ε dimensions, and on-mass shell renormalization is employed. The one-loop effect is given to order ε , to be combined with the 1 / ε divergence of the two-loop amplitude. Master integrals are given. Final evaluations of two-loop energy shifts for 1 S , 2 S , and 2 P states are done analytically, and results are presented, with an emphasis on muonic hydrogen. For relativistic Dirac-Coulomb reference states, higher-order coefficients are obtained for the Z α -expansion. We compare the results obtained to the existing literature. Published by the American Physical Society2024 
    more » « less
  3. We use one-photon excitation to promote K -shell electrons of formic acid (which has a planar equilibrium structure) to an antibonding π * orbital. The excited molecule is known to have a (chiral) pyramidal equilibrium structure. In our experiment, we determine the handedness of the excited molecule by imaging the momenta of charged fragments, which occur after its Coulomb explosion triggered by Auger-Meitner decay cascades succeeding the excitation. We find that the handedness of the excited molecule depends on its spatial orientation with respect to the propagation (or polarization) direction of the exciting photon. The effect is largely independent of the exact polarization properties of the light driving the 1 s π * excitation. Published by the American Physical Society2024 
    more » « less
  4. We discuss numerical aspects of instantons in two- and three-dimensional ϕ 4 theories with an internal O ( N ) symmetry group, the so-called N -vector model. By combining asymptotic transseries expansions for large arguments with convergence acceleration techniques, we obtain high-precision values for certain integrals of the instanton that naturally occur in loop corrections around instanton configurations. Knowledge of these numerical properties is necessary in order to evaluate corrections to the large-order factorial growth of perturbation theory in ϕ 4 theories. The results contribute to the understanding of the mathematical structures underlying the instanton configurations. Published by the American Physical Society2024 
    more » « less
  5. The global symmetries of a D -dimensional quantum field theory (QFT) can, in many cases, be captured in terms of a ( D + 1 )-dimensional symmetry topological field theory (SymTFT). In this work we construct a ( D + 1 )-dimensional theory which governs the symmetries of QFTs with multiple sectors which have connected correlators that admit a decoupling limit. The associated symmetry field theory decomposes into a SymTree, namely a treelike structure of SymTFTs fused along possibly nontopological junctions. In string-realized multisector QFTs, these junctions are smoothed out in the extradimensional geometry, as we demonstrate in examples. We further use this perspective to study the fate of higher-form symmetries in the context of holographic large M averaging where the topological sectors of different large M replicas become dressed by additional extended operators associated with the SymTree. Published by the American Physical Society2024 
    more » « less