skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 30, 2025

Title: Long strings of consecutive composite values of polynomials
We show that for any polynomial f : Z Z f:\mathbb {Z}\to \mathbb {Z} with positive leading coefficient and irreducible over Q \mathbb {Q} , if x x is large enough then there is a string of ( log x ) ( log log x ) 1 / 835 (\log x)(\log \log x)^{1/835} consecutive integers n [ 1 , x ] n\in [1,x] for which f ( n ) f(n) is composite. This improves the result by Kevin Ford, Sergei Konyagin, James Maynard, Carl Pomerance, and Terence Tao [J. Eur. Math. Soc. (JEMS) 23 (2023), pp. 667–700], which has the exponent of log log x \log \log x being a constant depending on f f which can be exponentially small in the degree of f f more » « less
Award ID(s):
2301264
PAR ID:
10611658
Author(s) / Creator(s):
;
Publisher / Repository:
American Mathematical Society
Date Published:
Journal Name:
Transactions of the American Mathematical Society
Volume:
378
ISSN:
0002-9947
Page Range / eLocation ID:
1261-1282
Subject(s) / Keyword(s):
primes polynomials
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We prove a single-value version of Reshetnyak’s theorem. Namely, if a non-constant map f W l o c 1 , n ( Ω , R n ) f \in W^{1,n}_{\mathrm {loc}}(\Omega , \mathbb {R}^n) from a domain Ω R n \Omega \subset \mathbb {R}^n satisfies the estimate | D f ( x ) | n K J f ( x ) + Σ ( x ) | f ( x ) y 0 | n \lvert Df(x) \rvert ^n \leq K J_f(x) + \Sigma (x) \lvert f(x) - y_0 \rvert ^n at almost every x Ω x \in \Omega for some K 1 K \geq 1 , y 0 R n y_0\in \mathbb {R}^n and Σ L l o c 1 + ε ( Ω ) \Sigma \in L^{1+\varepsilon }_{\mathrm {loc}}(\Omega ) , then f 1 { y 0 } f^{-1}\{y_0\} is discrete, the local index i ( x , f ) i(x, f) is positive in f 1 { y 0 } f^{-1}\{y_0\} , and every neighborhood of a point of f 1 { y 0 } f^{-1}\{y_0\} is mapped to a neighborhood of y 0 y_0 . Assuming this estimate for a fixed K K at every y 0 R n y_0 \in \mathbb {R}^n is equivalent to assuming that the map f f is K K -quasiregular, even if the choice of Σ \Sigma is different for each y 0 y_0 . Since the estimate also yields a single-value Liouville theorem, it hence appears to be a good pointwise definition of K K -quasiregularity. As a corollary of our single-value Reshetnyak’s theorem, we obtain a higher-dimensional version of the argument principle that played a key part in the solution to the Calderón problem. 
    more » « less
  2. Let f f be analytic on [ 0 , 1 ] [0,1] with | f ( k ) ( 1 / 2 ) | ⩽<#comment/> A α<#comment/> k k ! |f^{(k)}(1/2)|\leqslant A\alpha ^kk! for some constants A A and α<#comment/> > 2 \alpha >2 and all k ⩾<#comment/> 1 k\geqslant 1 . We show that the median estimate of μ<#comment/> = ∫<#comment/> 0 1 f ( x ) d x \mu =\int _0^1f(x)\,\mathrm {d} x under random linear scrambling with n = 2 m n=2^m points converges at the rate O ( n −<#comment/> c log ⁡<#comment/> ( n ) ) O(n^{-c\log (n)}) for any c > 3 log ⁡<#comment/> ( 2 ) / π<#comment/> 2 ≈<#comment/> 0.21 c> 3\log (2)/\pi ^2\approx 0.21 . We also get a super-polynomial convergence rate for the sample median of 2 k −<#comment/> 1 2k-1 random linearly scrambled estimates, when k / m k/m is bounded away from zero. When f f has a p p ’th derivative that satisfies a λ<#comment/> \lambda -Hölder condition then the median of means has error O ( n −<#comment/> ( p + λ<#comment/> ) + ϵ<#comment/> ) O( n^{-(p+\lambda )+\epsilon }) for any ϵ<#comment/> > 0 \epsilon >0 , if k →<#comment/> ∞<#comment/> k\to \infty as m →<#comment/> ∞<#comment/> m\to \infty . The proof techniques use methods from analytic combinatorics that have not previously been applied to quasi-Monte Carlo methods, most notably an asymptotic expression from Hardy and Ramanujan on the number of partitions of a natural number. 
    more » « less
  3. We introduce the notions of symmetric and symmetrizable representations of SL 2 ⁡<#comment/> ( Z ) {\operatorname {SL}_2(\mathbb {Z})} . The linear representations of SL 2 ⁡<#comment/> ( Z ) {\operatorname {SL}_2(\mathbb {Z})} arising from modular tensor categories are symmetric and have congruence kernel. Conversely, one may also reconstruct modular data from finite-dimensional symmetric, congruence representations of SL 2 ⁡<#comment/> ( Z ) {\operatorname {SL}_2(\mathbb {Z})} . By investigating a Z / 2 Z \mathbb {Z}/2\mathbb {Z} -symmetry of some Weil representations at prime power levels, we prove that all finite-dimensional congruence representations of SL 2 ⁡<#comment/> ( Z ) {\operatorname {SL}_2(\mathbb {Z})} are symmetrizable. We also provide examples of unsymmetrizable noncongruence representations of SL 2 ⁡<#comment/> ( Z ) {\operatorname {SL}_2(\mathbb {Z})} that are subrepresentations of a symmetric one. 
    more » « less
  4. We formulate and prove a Conner–Floyd isomorphism for the algebraic K-theory of arbitrary qcqs derived schemes. To that end, we study a stable ∞<#comment/> \infty -category of non- A 1 \mathbb {A}^1 -invariant motivic spectra, which turns out to be equivalent to the ∞<#comment/> \infty -category of fundamental motivic spectra satisfying elementary blowup excision, previously introduced by the first and third authors. We prove that this ∞<#comment/> \infty -category satisfies P 1 \mathbb {P}^1 -homotopy invariance and weighted A 1 \mathbb {A}^1 -homotopy invariance, which we use in place of A 1 \mathbb {A}^1 -homotopy invariance to obtain analogues of several key results from A 1 \mathbb {A}^1 -homotopy theory. These allow us in particular to define a universal oriented motivic E ∞<#comment/> \mathbb {E}_\infty -ring spectrum M G L \mathrm {MGL} . We then prove that the algebraic K-theory of a qcqs derived scheme X X can be recovered from its M G L \mathrm {MGL} -cohomology via a Conner–Floyd isomorphism\[ M G L ∗<#comment/> ∗<#comment/> ( X ) ⊗<#comment/> L Z [ β<#comment/> ±<#comment/> 1 ] ≃<#comment/> K ∗<#comment/> ∗<#comment/> ( X ) , \mathrm {MGL}^{**}(X)\otimes _{\mathrm {L}{}}\mathbb {Z}[\beta ^{\pm 1}]\simeq \mathrm {K}{}^{**}(X), \]where L \mathrm {L}{} is the Lazard ring and K p , q ( X ) = K 2 q −<#comment/> p ( X ) \mathrm {K}{}^{p,q}(X)=\mathrm {K}{}_{2q-p}(X) . Finally, we prove a Snaith theorem for the periodized version of M G L \mathrm {MGL}
    more » « less
  5. Let K / Q p K/\mathbb {Q}_p be a finite unramified extension, ρ<#comment/> ¯<#comment/> : G a l ( Q ¯<#comment/> p / K ) →<#comment/> G L n ( F ¯<#comment/> p ) \overline {\rho }:\mathrm {Gal}(\overline {\mathbb {Q}}_p/K)\rightarrow \mathrm {GL}_n(\overline {\mathbb {F}}_p) a continuous representation, and τ<#comment/> \tau a tame inertial type of dimension n n . We explicitly determine, under mild regularity conditions on τ<#comment/> \tau , the potentially crystalline deformation ring R ρ<#comment/> ¯<#comment/> η<#comment/> , τ<#comment/> R^{\eta ,\tau }_{\overline {\rho }} in parallel Hodge–Tate weights η<#comment/> = ( n −<#comment/> 1 , ⋯<#comment/> , 1 , 0 ) \eta =(n-1,\cdots ,1,0) and inertial type τ<#comment/> \tau when theshapeof ρ<#comment/> ¯<#comment/> \overline {\rho } with respect to τ<#comment/> \tau has colength at most one. This has application to the modularity of a class of shadow weights in the weight part of Serre’s conjecture. Along the way we make unconditional the local-global compatibility results of Park and Qian [Mém. Soc. Math. Fr. (N.S.) 173 (2022), pp. vi+150]. 
    more » « less