skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 25, 2026

Title: Rippled metamaterials with scale-dependent tailorable elasticity
Thermally induced ripples are intrinsic features of nanometer-thick films, atomically thin materials, and cell membranes, significantly affecting their elastic properties. Despite decades of theoretical studies on the mechanics of suspended thermalized sheets, controversy still exists over the impact of these ripples, with conflicting predictions about whether elasticity is scale-dependent or scale-independent. Experimental progress has been hindered so far by the inability to have a platform capable of fully isolating and characterizing the effects of ripples. This knowledge gap limits the fundamental understanding of thin materials and their practical applications. Here, we show that thermal-like static ripples shape thin films into a class of metamaterials with scale-dependent, customizable elasticity. Utilizing a scalable semiconductor manufacturing process, we engineered nanometer-thick films with precisely controlled frozen random ripples, resembling snapshots of thermally fluctuating membranes. Resonant frequency measurements of rippled cantilevers reveal that random ripples effectively renormalize and enhance the average bending rigidity and sample-to-sample variations in a scale-dependent manner, consistent with recent theoretical estimations. The predictive power of the theoretical model, combined with the scalability of the fabrication process, was further exploited to create kirigami architectures with tailored bending rigidity and mechanical metamaterials with delayed buckling instability.  more » « less
Award ID(s):
2428731
PAR ID:
10611857
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
United States National Academy of Sciences (NAS)
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
122
Issue:
12
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Nanomechanical devices made from ultrathin materials are transforming diverse fields, including sensing, signal processing, and quantum technologies. However, as these materials become thinner, their low bending rigidity poses significant fabrication challenges, and achieving nanometer-thick flat cantilevers with consistent and predictable mechanical responses has remained elusive despite decades of research. Here we present nanometer-thick, ultraflat cantilever resonators fabricated using atomic layer deposition. By effectively mitigating the effects of uncontrollable built-in strain and geometric disorder, the ultraflat nanocantilevers exhibit resonance frequencies closely aligned with thin-plate theory predictions and display low sample-to-sample variability. These cantilevers maintain mechanical stability in both vacuum and air environments, even at large length-to-thickness ratios of up to 3000. The ultraflat nanocantilevers are approaching the thickness limit, beyond which thermal fluctuations at room temperature can spontaneously induce random ripples in otherwise flat films. 
    more » « less
  2. Abstract Bending and folding techniques such as origami and kirigami enable the scale‐invariant design of 3D structures, metamaterials, and robots from 2D starting materials. These design principles are especially valuable for small systems because most micro‐ and nanofabrication involves lithographic patterning of planar materials. Ultrathin films of inorganic materials serve as an ideal substrate for the fabrication of flexible microsystems because they possess high intrinsic strength, are not susceptible to plasticity, and are easily integrated into microfabrication processes. Here, atomic layer deposition (ALD) is employed to synthesize films down to 2 nm thickness to create membranes, metamaterials, and machines with micrometer‐scale dimensions. Two materials are studied as model systems: ultrathin SiO2and Pt. In this thickness limit, ALD films of these materials behave elastically and can be fabricated with fJ‐scale bending stiffnesses. Further, ALD membranes are utilized to design micrometer‐scale mechanical metamaterials and magnetically actuated 3D devices. These results establish thin ALD films as a scalable basis for micrometer‐scale actuators and robotics. 
    more » « less
  3. We describe a method to determine membrane bending rigidity from capacitance measurements on large area, free-standing, planar, biomembranes. The bending rigidity of lipid membranes is an important biological mechanical property that is commonly optically measured in vesicles, but difficult to quantify in a planar, unsupported system. To accomplish this, we simultaneously image and apply an electric potential to free-standing, millimeter area, planar lipid bilayers composed of DOPC and DOPG phospholipids to measure the membrane Young’s (elasticity) modulus. The bilayer is then modeled as two adjacent thin elastic films to calculate bending rigidity from the electromechanical response of the membrane to the applied field. Using DOPC, we show that bending rigidities determined by this approach are in good agreement with the existing work using neutron spin echo on vesicles, atomic force spectroscopy on supported lipid bilayers, and micropipette aspiration of giant unilamellar vesicles. We study the effect of asymmetric calcium concentration on symmetric DOPC and DOPG membranes and quantify the resulting changes in bending rigidity. This platform offers the ability to create planar bilayers of controlled lipid composition and aqueous ionic environment, with the ability to asymmetrically alter both. We aim to leverage this high degree of compositional and environmental control, along with the capacity to measure physical properties, in the study of various biological processes in the future. 
    more » « less
  4. Abstract In the burgeoning field of spintronics, antiferromagnetic materials (AFMs) are attracting significant attention for their potential to enable ultra‐fast, energy‐efficient devices. Thin films of AFMs are particularly promising for practical applications due to their compatibility with spin‐orbit torque (SOT) mechanisms. However, studying these thin films presents challenges, primarily due to the weak signals they produce and the rapid dynamics driven by SOT, that are too fast for conventional electric transport or microwave techniques to capture. The time‐resolved magneto‐optical Kerr effect (TR‐MOKE) has been a successful tool for probing antiferromagnetic dynamics in bulk materials, thanks to its sub‐picosecond (sub‐ps) time resolution. Yet, its application to nanometer‐scale thin films has been limited by the difficulty of detecting weak signals in such small volumes. In this study, the first successful observation of antiferromagnetic dynamics are presented in nanometer‐thick orthoferrite films using the pump‐probe technique to detect TR‐MOKE signal. This paper report an exceptionally low damping constant of 1.5 × 10−4and confirms the AFM magnonic nature of these dynamics through angular‐dependent measurements. Furthermore, it is observed that electrical currents can potentially modulate these dynamics via SOT. The findings lay the groundwork for developing tunable, energy‐efficient spintronic devices, paving the way for advancements in next‐generation spintronic applications. 
    more » « less
  5. Abstract The preparation of thin films of nanostructured functional materials is a critical step in a diverse array of applications ranging from photonics to separation science. New thin‐film fabrication methods are sought to harness the emerging potential of self‐assembled nanostructured materials as next‐generation membranes. Here, the authors show that nanometer‐scale control over the thickness of self‐assembled mesophases can be enacted by directional photopolymerization in the presence of highly photo‐attenuating molecular species. Metrology reveals average film growth rates below ten nanometers per second, indicating that high‐resolution fabrication is possible with this approach. The trends in experimental data are reproduced well in numerical simulations of mean‐field frontal photopolymerization modeled in a highly photo‐attenuating and photo‐bleaching medium. These simulation results connect the experimentally observed nanometer‐scale control of film growth to the strong photo‐attenuating nature of the mesophase, which originates from its high‐aromatic‐ring content. Water permeability measurements conducted on the fabricated thin films show the expected linear scaling of permeability with film thickness. Film permeabilities compare favorably with current state‐of‐the‐art nanofiltration and reverse osmosis membranes, suggesting that the current approach may be utilized to prepare new nanoporous membranes for such applications. 
    more » « less