skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nanometer-thick ultraflat cantilever resonators
Abstract Nanomechanical devices made from ultrathin materials are transforming diverse fields, including sensing, signal processing, and quantum technologies. However, as these materials become thinner, their low bending rigidity poses significant fabrication challenges, and achieving nanometer-thick flat cantilevers with consistent and predictable mechanical responses has remained elusive despite decades of research. Here we present nanometer-thick, ultraflat cantilever resonators fabricated using atomic layer deposition. By effectively mitigating the effects of uncontrollable built-in strain and geometric disorder, the ultraflat nanocantilevers exhibit resonance frequencies closely aligned with thin-plate theory predictions and display low sample-to-sample variability. These cantilevers maintain mechanical stability in both vacuum and air environments, even at large length-to-thickness ratios of up to 3000. The ultraflat nanocantilevers are approaching the thickness limit, beyond which thermal fluctuations at room temperature can spontaneously induce random ripples in otherwise flat films.  more » « less
Award ID(s):
2428731
PAR ID:
10609271
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Journal of Micromechanics and Microengineering
Volume:
35
Issue:
7
ISSN:
0960-1317
Format(s):
Medium: X Size: Article No. 075001
Size(s):
Article No. 075001
Sponsoring Org:
National Science Foundation
More Like this
  1. Thermally induced ripples are intrinsic features of nanometer-thick films, atomically thin materials, and cell membranes, significantly affecting their elastic properties. Despite decades of theoretical studies on the mechanics of suspended thermalized sheets, controversy still exists over the impact of these ripples, with conflicting predictions about whether elasticity is scale-dependent or scale-independent. Experimental progress has been hindered so far by the inability to have a platform capable of fully isolating and characterizing the effects of ripples. This knowledge gap limits the fundamental understanding of thin materials and their practical applications. Here, we show that thermal-like static ripples shape thin films into a class of metamaterials with scale-dependent, customizable elasticity. Utilizing a scalable semiconductor manufacturing process, we engineered nanometer-thick films with precisely controlled frozen random ripples, resembling snapshots of thermally fluctuating membranes. Resonant frequency measurements of rippled cantilevers reveal that random ripples effectively renormalize and enhance the average bending rigidity and sample-to-sample variations in a scale-dependent manner, consistent with recent theoretical estimations. The predictive power of the theoretical model, combined with the scalability of the fabrication process, was further exploited to create kirigami architectures with tailored bending rigidity and mechanical metamaterials with delayed buckling instability. 
    more » « less
  2. Abstract Magnetic topological states refer to a class of exotic phases in magnetic materials with the non‐trivial topological property determined by magnetic spin configurations. An example of such states is the quantum anomalous Hall (QAH) state, which is a zero magnetic field manifestation of the quantum Hall effect. Current research in this direction focuses on QAH insulators with a thickness of less than 10 nm. Here, molecular beam epitaxy (MBE) is employed to synthesize magnetic TI trilayers with a thickness of up to ≈106 nm. It is found that these samples exhibit well‐quantized Hall resistance and vanishing longitudinal resistance at zero magnetic field. By varying the magnetic dopants, gate voltages, temperature, and external magnetic fields, the properties of these thick QAH insulators are examined and the robustness of the 3D QAH effect is demonstrated. The realization of the well‐quantized 3D QAH effect indicates that the nonchiral side surface states of the thick magnetic TI trilayers are gapped and thus do not affect the QAH quantization. The 3D QAH insulators of hundred‐nanometer thickness provide a promising platform for the exploration of fundamental physics, including axion physics and image magnetic monopole, and the advancement of electronic and spintronic devices to circumvent Moore's law. 
    more » « less
  3. Abstract Carbon nanotube (CNT)‐reinforced polymer fibers have broad applications in electrical, thermal, optical, and smart applications. The key for mechanically robust fibers is the precise microstructural control of these CNTs, including their location, dispersion, and orientation. A new methodology is presented here that combines dry‐jet‐wet spinning and forced assembly for scalable fabrication of fiber composites, consisting of alternating layers of polyacrylonitrile (PAN) and CNT/PAN. The thickness of each layer is controlled during the multiplication process, with resolutions down to the nanometer scale. The introduction of alternating layers facilitates the quality of CNT dispersion due to nanoscale confinement, and at the same time, enhances their orientation due to shear stress generated at each layer interface. In a demonstration example, with 0.5 wt% CNTs loading and the inclusion of 170 nm thick layers, a composite fiber shows a significant mechanical enhancement, namely, a 46.4% increase in modulus and a 39.5% increase in strength compared to a pure PAN fiber. Beyond mechanical reinforcement, the presented fabrication method is expected to have enormous potential for scalable fabrication of polymer nanocomposites with complex structural features for versatile applications. 
    more » « less
  4. Abstract An axion insulator is a three-dimensional (3D) topological insulator (TI), in which the bulk maintains the time-reversal symmetry or inversion symmetry but the surface states are gapped by surface magnetization. The axion insulator state has been observed in molecular beam epitaxy (MBE)-grown magnetically doped TI sandwiches and exfoliated intrinsic magnetic TI MnBi2Te4flakes with an even number layer. All these samples have a thickness of ~ 10 nm, near the 2D-to-3D boundary. The coupling between the top and bottom surface states in thin samples may hinder the observation of quantized topological magnetoelectric response. Here, we employ MBE to synthesize magnetic TI sandwich heterostructures and find that the axion insulator state persists in a 3D sample with a thickness of ~ 106 nm. Our transport results show that the axion insulator state starts to emerge when the thickness of the middle undoped TI layer is greater than ~ 3 nm. The 3D hundred-nanometer-thick axion insulator provides a promising platform for the exploration of the topological magnetoelectric effect and other emergent magnetic topological states, such as the high-order TI phase. 
    more » « less
  5. The electrical resistivity of conventional metals such as copper is known to increase in thin films as a result of electron-surface scattering, thus limiting the performance of metals in nanoscale electronics. Here, we find an unusual reduction of resistivity with decreasing film thickness in niobium phosphide (NbP) semimetal deposited at relatively low temperatures of 400°C. In films thinner than 5 nanometers, the room temperature resistivity (~34 microhm centimeters for 1.5-nanometer-thick NbP) is up to six times lower than the resistivity of our bulk NbP films, and lower than conventional metals at similar thickness (typically about 100 microhm centimeters). The NbP films are not crystalline but display local nanocrystalline, short-range order within an amorphous matrix. Our analysis suggests that the lower effective resistivity is caused by conduction through surface channels, together with high surface carrier density and sufficiently good mobility as the film thickness is reduced. These results and the fundamental insights obtained here could enable ultrathin, low-resistivity wires for nanoelectronics beyond the limitations of conventional metals. 
    more » « less