skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fluorescence-Based Ratiometric Analysis of Sperm Centrioles - a method to diagnose male infertility:
A large proportion of infertility and miscarriage causes are unknown. One potential cause is a defective sperm centriole, a subcellular structure essential for sperm motility and embryonic development. Yet, the extent to which centriolar maladies contribute to male infertility is still being determined due to the lack of a convenient way to assess centriole quality. We developed a robust, location-based, ratiometric assay to overcome this roadblock, the Fluorescence-based Ratiometric Assessment of Centrioles (FRAC). We performed several pilot studies suggesting that reduced centriole quality was associated with infertility and, in particular, with unexplained infertility in humans and unexplained sub-fertility in bovines. We also found that centriole quality correlates with zygote nucleoli polarization. These findings suggest that FRAC is a sensitive method to identify unexplained infertility and potentially also miscarriage. This finding provides a rationale for a large study on the role and practical application of sperm centriole evaluation to diagnose infertility.  more » « less
Award ID(s):
2233383
PAR ID:
10611863
Author(s) / Creator(s):
Publisher / Repository:
CELL BIO24
Date Published:
Format(s):
Medium: X
Institution:
University of Toledo
Sponsoring Org:
National Science Foundation
More Like this
  1. Temperature is a key abiotic factor that influences performance of several physiological traits in ectotherms. Organisms regulate their body temperature within a range of temperatures to enhance physiological function. The capacity of ectotherms, such as lizards, to maintain their body temperature within their preferred range influences physiological traits such as speed, various reproductive patterns, and critical fitness components, such as growth rates or survival. Here, we evaluate the influence of temperature on locomotor performance, sperm morphology and viability in a high elevation lizard species (Sceloporus aeneus). Whereas maximal values for sprint speed coincides with field active and preferred body temperature, short-term exposure at the same range of temperatures produces abnormalities in sperm morphology, lower sperm concentration and diminishes sperm motility and viability. In conclusion, we confirmed that although locomotor performance is maximized at preferred temperatures, there is a trade-off with male reproductive attributes, which may cause infertility. As a consequence, prolonged exposure to preferred temperatures could threaten the persistence of the species through reduced fertility. Persistence of the species is favored in environments with access to cooler, thermal microhabitats that enhance reproductive parameters. 
    more » « less
  2. Eve, Alex (Ed.)
    Genetic analyses of mammalian gametogenesis and fertility have the potential to inform about two important and interrelated clinical areas: infertility and contraception. Here, we address the genetics and genomics underlying gamete formation, productivity and function in the context of reproductive success in mammalian systems, primarily mouse and human. Although much is known about the specific genes and proteins required for meiotic processes and sperm function, we know relatively little about other gametic determinants of overall fertility, such as regulation of gamete numbers, duration of gamete production, and gamete selection and function in fertilization. As fertility is not a binary trait, attention is now appropriately focused on the oligogenic, quantitative aspects of reproduction. Multiparent mouse populations, created by complex crossing strategies, exhibit genetic diversity similar to human populations and will be valuable resources for genetic discovery, helping to overcome current limitations to our knowledge of mammalian reproductive genetics. Finally, we discuss how what we know about the genomics of reproduction can ultimately be brought to the clinic, informing our concepts of human fertility and infertility, and improving assisted reproductive technologies. 
    more » « less
  3. The hybrids of female channel catfish (Ictalurus punctatus) and male blue catfish (I. furcatus) account for >50% of US catfish production due to superior growth, feed conversion, and disease resistance compared to both parental species. However, these hybrids can rarely be naturally spawned. Sperm collection is a lethal procedure, and sperm samples are now cryopreserved for fertilization needs. Previous studies showed that variation in sperm quality causes variable embryo hatch rates, which is the limiting factor in hybrid catfish breeding. Biomarkers as indicators for sperm quality and reproductive success are currently lacking. To address this, we investigated expression changes caused by cryopreservation using transcriptome profiles of fresh and cryopreserved sperm. Sperm quality measurements revealed that cryopreservation significantly increased oxidative stress levels and DNA fragmentation, and reduced sperm kinematic parameters. The present RNA-seq study identified 849 upregulated genes after cryopreservation, including members of all five complexes in the mitochondrial electron transport chain, suggesting a boost in oxidative phosphorylation activities, which often lead to excessive production of reactive oxygen species (ROS) associated with cell death. Interestingly, functional enrichment analyses revealed compensatory changes in gene expression after cryopreservation to offset detrimental effects of ultra-cold storage: MnSOD was induced to control ROS production; chaperones and ubiquitin ligases were upregulated to correct misfolded proteins or direct them to degradation; negative regulators of apoptosis, amide biosynthesis, and cilium-related functions were also enriched. Our study provides insight into underlying molecular mechanisms of sperm cryoinjury and lays a foundation to further explore molecular biomarkers on cryo-survival and gamete quality. 
    more » « less
  4. null (Ed.)
    Lanthanide-doped upconversion nanoparticles (UCNPs) have attracted widespread interest in bioimaging and sensing due to their photostability, low excitation energy, and good tissue penetration. Plasmonic nanostructures, on the other hand, can enhance the luminescence of UCNPs by concentrating electric fields into a nanoscale volume. While the enhanced luminescence intensity is in principle beneficial to sensing, intensity-based sensing has limitations in absolute measurements. This deficiency can be overcome by employing ratiometric sensing in which intensity ratio, rather than intensity itself, is used to quantitatively determine the presence of analytes. The ratiometric sensing is advantageous because the intensity ratio is much less sensitive to the variations in the environment and the number of probe materials in the sensing volume. Here, we demonstrate a plasmonic nanostructure with upconversion nanoparticles for an enhanced ratiometric sensing platform. The plasmonic nanostructure is composed of UCNPs, an indium tin oxide (ITO) spacer layer and an Au nanodisk. The nanostructure is designed such that the plasmon resonance selectively enhances the red luminescence of NaYGdF 4 :Yb 3+ , Er 3+ UCNPs while leaving the green luminescence unaffected, thereby increasing the dynamic range and achievable sensitivity of the red-to-green (R/G) intensity ratio. We observed a 4-fold enhancement in the R/G ratio and also a drastic reduction in the signal uncertainty. This work advances our knowledge of the optical interaction between UCNPs and plasmonic nanostructures and also provides a foundation for improved ratiometric sensing in biomedical applications. 
    more » « less
  5. null (Ed.)
    Males that exhibit alternative reproductive tactics (ARTs) often differ in the risk of sperm competition and the energetic trade-offs they experience. The resulting patterns of selection could lead to between-tactic differences in ejaculate traits. Despite extensive research on male ARTs, there is no comprehensive review of whether and what differences in sperm traits exist between male ARTs. We review existing theory on ejaculate evolution relevant to ARTs and then conduct a comprehensive vote-counting review of the empirical data comparing sperm traits between males adopting ARTs. Despite the general expectation that sneaker males should produce sperm that are more competitive (e.g. higher quality or performance), we find that existing theory does not predict explicitly how males adopting ARTs should differ in sperm traits. The majority of studies find no significant difference in sperm performance traits between dominant and sneaker males. However, when there is a difference, sneaker males tend to have higher sperm performance trait values than dominant males. We propose ways that future theoretical and empirical research can improve our understanding of the evolution of ejaculate traits in ARTs. We then highlight how studying ejaculate traits in species with ARTs will improve our broader knowledge of ejaculate evolution. This article is part of the theme issue ‘Fifty years of sperm competition’. 
    more » « less