The Super-Kamiokande and T2K Collaborations present a joint measurement of neutrino oscillation parameters from their atmospheric and beam neutrino data. It uses a common interaction model for events overlapping in neutrino energy and correlated detector systematic uncertainties between the two datasets, which are found to be compatible. Using 3244.4 days of atmospheric data and a beam exposure of protons on target in (anti)neutrino mode, the analysis finds a exclusion of conservation (defined as ) and a exclusion of the inverted mass ordering. Published by the American Physical Society2025 
                        more » 
                        « less   
                    This content will become publicly available on March 1, 2026
                            
                            Thermocoupled early dark energy
                        
                    
    
            Early dark energy solutions to the Hubble tension introduce an additional scalar field which is frozen at early times but becomes dynamical around matter-radiation equality. In order to alleviate the tension, the scalar’s share of the total energy density must rapidly shrink from at the onset of matter domination to by recombination. This typically requires a steep potential that is imposed rather than emerging from a concrete particle physics model. Here, we point out an alternative possibility: a homogeneous scalar field coupled quadratically to a cosmological background of light thermal relics (such as the Standard Model neutrino) will acquire an effective potential which can reproduce the dynamics necessary to alleviate the tension. We identify the relevant parameter space for this “thermocoupled” scenario and study its unique phenomenology at the background level, including the back-reaction on the neutrino mass. Follow-up numerical work is necessary to determine the constraints placed on the model by early time measurements. Published by the American Physical Society2025 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2412361
- PAR ID:
- 10611915
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review D
- Volume:
- 111
- Issue:
- 6
- ISSN:
- 2470-0010
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We study the consequences of new long-range forces between neutrinos on cosmic scales. If these forces are a few orders of magnitude stronger than gravity, they can induce perturbation instability in the nonrelativistic cosmic neutrino background in the late time universe. As a result, the cosmic neutrino background may form nonlinear bound states instead of free-streaming. The implications of the formation of nonlinear neutrino bound states include enhancing matter perturbations and triggering star formation. Based on existing measurements of the matter power spectrum and reionization history, we place new constraints on long-range forces between neutrinos with ranges lying in . Published by the American Physical Society2025more » « less
- 
            Massive scalar fields are promising candidates for addressing many unresolved problems in fundamental physics. We report the first model-agnostic Bayesian search of massive scalar fields that are nonminimally coupled to gravity in LIGO/Virgo/KAGRA gravitational-wave data. We find no evidence for such fields and place the most stringent upper limits on their coupling for scalar masses . We exemplify the strength of these bounds by applying them to massive scalar-Gauss-Bonnet gravity, finding the tightest constraints on the coupling constant to date, for scalar masses to 90% credible level. Published by the American Physical Society2025more » « less
- 
            We present a search for an eV-scale sterile neutrino using 7.5 years of data from the IceCube DeepCore detector. The analysis uses a sample of 21,914 events with energies between 5 and 150 GeV to search for sterile neutrinos through atmospheric muon neutrino disappearance. Improvements in event selection and treatment of systematic uncertainties provide greater statistical power compared to previous DeepCore sterile neutrino searches. Our results are compatible with the absence of mixing between active and sterile neutrino states, and we place constraints on the mixing matrix elements and at 90% CL under the assumption that . These null results add to the growing tension between anomalous appearance results and constraints from disappearance searches in the sterile neutrino landscape. Published by the American Physical Society2024more » « less
- 
            We present a search for long-lived particles (LLPs), produced in kaon decays, that decay to two muons inside the ICARUS neutrino detector. This channel would be a signal of hidden sector models that can address outstanding issues in particle physics such as the strong CP problem and the microphysical origin of dark matter. The search is performed with data collected in the Neutrinos at the Main Injector (NuMI) beam at Fermilab corresponding to protons-on-target. No new physics signal is observed, and we set world leading limits on heavy QCD axions, as well as for the Higgs portal scalar among dedicated searches. Limits are also presented in a model-independent way applicable to any new physics model predicting the process , for a LLP . This result is the first search for new physics performed with the ICARUS detector at Fermilab. It paves the way for the future program of LLP searches at ICARUS. Published by the American Physical Society2025more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
