skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: Thermocoupled early dark energy
Early dark energy solutions to the Hubble tension introduce an additional scalar field which is frozen at early times but becomes dynamical around matter-radiation equality. In order to alleviate the tension, the scalar’s share of the total energy density must rapidly shrink from 10 % at the onset of matter domination to 1 % by recombination. This typically requires a steep potential that is imposed rather than emerging from a concrete particle physics model. Here, we point out an alternative possibility: a homogeneous scalar field coupled quadratically to a cosmological background of light thermal relics (such as the Standard Model neutrino) will acquire an effective potential which can reproduce the dynamics necessary to alleviate the tension. We identify the relevant parameter space for this “thermocoupled” scenario and study its unique phenomenology at the background level, including the back-reaction on the neutrino mass. Follow-up numerical work is necessary to determine the constraints placed on the model by early time measurements. Published by the American Physical Society2025  more » « less
Award ID(s):
2412361
PAR ID:
10611915
Author(s) / Creator(s):
;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review D
Volume:
111
Issue:
6
ISSN:
2470-0010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Super-Kamiokande and T2K Collaborations present a joint measurement of neutrino oscillation parameters from their atmospheric and beam neutrino data. It uses a common interaction model for events overlapping in neutrino energy and correlated detector systematic uncertainties between the two datasets, which are found to be compatible. Using 3244.4 days of atmospheric data and a beam exposure of 19.7 ( 16.3 ) × 10 20 protons on target in (anti)neutrino mode, the analysis finds a 1.9 σ exclusion of C P conservation (defined as J C P = 0 ) and a 1.2 σ exclusion of the inverted mass ordering. Published by the American Physical Society2025 
    more » « less
  2. We study the consequences of new long-range forces between neutrinos on cosmic scales. If these forces are a few orders of magnitude stronger than gravity, they can induce perturbation instability in the nonrelativistic cosmic neutrino background in the late time universe. As a result, the cosmic neutrino background may form nonlinear bound states instead of free-streaming. The implications of the formation of nonlinear neutrino bound states include enhancing matter perturbations and triggering star formation. Based on existing measurements of the matter power spectrum and reionization history, we place new constraints on long-range forces between neutrinos with ranges lying in 1 kpc m ϕ 1 10 Mpc . Published by the American Physical Society2025 
    more » « less
  3. We report the first detection of coherent elastic neutrino-nucleus scattering (CEvNS) on natural germanium, measured at the Spallation Neutron Source at Oak Ridge National Laboratory. The Ge-Mini detector of the COHERENT collaboration employs large-mass, low-noise, high-purity germanium spectrometers, enabling excellent energy resolution, and an analysis threshold of 1.5 keV electron-equivalent ionization energy. We observe an on-beam excess of 20.6 6.3 + 7.1 counts with a total exposure of 10.22 GWhkg, and we reject the no-CEvNS hypothesis with 3.9 σ significance. The result agrees with the predicted standard model of particle physics signal rate within 2 σ . Published by the American Physical Society2025 
    more » « less
  4. Massive scalar fields are promising candidates for addressing many unresolved problems in fundamental physics. We report the first model-agnostic Bayesian search of massive scalar fields that are nonminimally coupled to gravity in LIGO/Virgo/KAGRA gravitational-wave data. We find no evidence for such fields and place the most stringent upper limits on their coupling for scalar masses 2 × 10 12 eV . We exemplify the strength of these bounds by applying them to massive scalar-Gauss-Bonnet gravity, finding the tightest constraints on the coupling constant to date, α GB 1 km for scalar masses 10 13 eV to 90% credible level. Published by the American Physical Society2025 
    more » « less
  5. The first search for soft unclustered energy patterns (SUEPs) is performed using an integrated luminosity of 138 fb 1 of proton-proton collision data at s = 13 TeV , collected in 2016–2018 by the CMS detector at the LHC. Such SUEPs are predicted by hidden valley models with a new, confining force with a large ’t Hooft coupling. In events with boosted topologies, selected by high-threshold hadronic triggers, the multiplicity and sphericity of clustered tracks are used to reject the background from standard model quantum chromodynamics. With no observed excess of events over the standard model expectation, limits are set on the cross section for production via gluon fusion of a scalar mediator with SUEP-like decays. © 2024 CERN, for the CMS Collaboration2024CERN 
    more » « less