Abstract Quantification of genital variation in males and females can inform our understanding of likely copulatory interactions and evolution of genital diversity. However, no studies have quantified genital shape variation within a single snake species or examined the shape and size of both the vaginal pouch and hemipenes. Here, we examine the shape and size of the genitalia of female and male diamondback water snakes, Nerodia rhombifer, using a three-dimensional automated landmark geometric morphometric approach on models of the lumen of the vaginal pouch and inflated hemipenes, applying these techniques for the first time to the genital shape of vertebrates. Vaginal pouch shape is significantly associated with body size and reproductive status. As females grow larger and become reproductive, the vaginal pouch enlarges, widens and becomes more bifurcated. In reproductive males, the shape of the hemipenes is also significantly associated with body size. As males grow larger, the hemipenes enlarge and widen; their bifurcation becomes more defined and the spines at the base become more prominent. Vaginal pouch and hemipenial centroid size are isometric with respect to body length. The centroid sizes of the hemipenes and vaginal pouch are not significantly different from one another, hence the genitalia match in size. Reproductive females and males covary in the degree of bifurcation and size of their genitalia. We demonstrate the utility of three-dimensional analysis in studies of the shape of soft tissues and advocate its use in future studies of genitalia.
more »
« less
This content will become publicly available on April 1, 2026
Morphological Variation in the Genitalia of the Burmese Python
ABSTRACT Despite the remarkable morphological diversity found in vertebrate genitalia, it has historically been difficult to quantify shape variation of soft tissue structures due to limitations of 3D landmarking methods. New techniques such as automatic landmarking now allow us to examine such structures in detail, and with these methods we quantify the intraspecific variation in the genitalia of Burmese pythons (Python bivittatus). Despite previous assertions that a vaginal pouch is not present in pythons, we find thatP. bivittatushave well developed vaginal pouches, that are morphologically diverse, and change shape over ontogeny. Vaginal pouches and hemipenes are isometric. Hemipenes also vary in shape ontogenetically, but we find no evidence of directional asymmetry in shape or size between adult right and left hemipenes suggesting a lack of laterality. We identify a potentially intersex neonate with hemipenes, testes, and a vaginal pouch. We discuss our results in the context of snake genital evolution and suggest other mechanisms for selection beyond the standard “lock and key” hypothesis. Future work examining genital shape variation of other snake families will provide more insight into the coevolutionary patterns shaping the genitalia diversity across snakes and vertebrates more broadly.
more »
« less
- Award ID(s):
- 2042260
- PAR ID:
- 10612045
- Publisher / Repository:
- BioOne
- Date Published:
- Journal Name:
- Journal of Morphology
- Volume:
- 286
- Issue:
- 4
- ISSN:
- 0362-2525
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Genital evolution can be driven by diverse selective pressures. Across taxa we see evidence of covariation between males and females, as well as divergent genital morphologies between closely related species. Quantitative analyses of morphological changes in coevolving male and female genitalia have not yet been shown in vertebrates. This study uses 2D and 3D geometric morphometrics to quantitatively compare the complex shapes of vaginal pouches and hemipenes across three species of watersnakes (the sister taxa Nerodia fasciata, N. sipedon, and a close relative N. rhombifer) to address the relationship between genital morphology and divergence time in a system where sexual conflict may have driven sexually antagonistic coevolution of genital traits. Our pairwise comparisons of shape differences across species show that the sister species have male and female genitalia that are significantly different from each other, but more similar to each other than to N. rhombifer. We also determine that the main axes of shape variation are the same for males and females, with changes that relate to deeper bilobation of the vaginal pouch and hemipenes. In males, the protrusion of the region of spines at the base of the hemipene trades off with the degree of bilobation, suggesting amelioration of sexual conflict, perhaps driven by changes in the relative size of the entrance of the vaginal pouch that could have made spines less effective.more » « less
-
Female genitalia are conspicuously overlooked in comparison to their male counterparts, limiting our understanding of sexual reproduction across vertebrate lineages. This study is the first complete description of the clitoris (hemiclitores) in female snakes. We describe morphological variation in size and shape ( n = 9 species, 4 families) that is potentially comparable to the male intromittent organs in squamate reptiles (hemipenes). Dissection, diffusible iodine contrast-enhanced micro-CT and histology revealed that, unlike lizard hemiclitores, the snake hemiclitores are non-eversible structures. The two individual hemiclitores are separated medially by connective tissue, forming a triangular structure that extends posteriorly. Histology of the hemiclitores in Australian death adders ( Acanthophis antarcticus ) showed erectile tissue and strands/bundles of nerves, but no spines (as is found in male hemipenes). These histological features suggest the snake hemiclitores have functional significance in mating and definitively show that the hemiclitores are not underdeveloped hemipenes or scent glands, which have been erroneously indicated in other studies. Our discovery supports that hemiclitores have been retained across squamates and provides preliminary evidence of differences in this structure among snake species, which can be used to further understand systematics, reproductive evolution and ecology across squamate reptiles.more » « less
-
Abstract Despite their evolutionary and biomedical importance, studies of the morphology and function of female genitalia have continued to lag behind those of male genitalia. While studying female genitalia can be difficult because of their soft, deformable and internal nature, recent advances in imaging, geometric analyses of shape and mechanical testing have been made, allowing for a much greater understanding of the incredible diversity of form and function of female genitalia. Here, we summarize some of these methods, as well as discuss some big questions in the field that are beginning to be examined now, and will continue to benefit from further work, especially a comparative approach. Topics of further research include examination of the morphology of female genitalia in situ, in-depth anatomical work in many more species, studies of the interplay between natural and sexual selection in influencing features of vaginal morphology, how these diverse functions influence the mechanical properties of tissues, and studies of clitoris morphology and function across amniotes. Many other research topics related to female genitalia remain largely unexplored, and we hope that the papers in this issue will continue to inspire further research on female genitalia.more » « less
-
Abstract We have previously shown that the time ofChlamydiainfection was crucial in determining the chlamydial infectivity and pathogenesis. This study aims to determine whether the time ofChlamydiainfection affects the genital tract microbiome. This study analyzed mice vaginal, uterine, and ovary/oviduct microbiome with and withoutChlamydiainfection. The mice were infected withChlamydiaat either 10:00 am (ZT3) or 10:00 pm (ZT15). The results showed that mice infected at ZT3 had higherChlamydiainfectivity than those infected at ZT15. There was more variation in the compositional complexity of the vaginal microbiome (alpha diversity) of mice infected at ZT3 than those mice infected at ZT15 throughout the infection within each treatment group, with both Shannon and Simpson diversity index values decreased over time. The analysis of samples collected four weeks post-infection showed that there were significant taxonomical differences (beta diversity) between different parts of the genital tract—vagina, uterus, and ovary/oviduct—and this difference was associated with the time of infection.FirmicutesandProteobacteriawere the most abundant phyla within the microbiome in all three genital tract regions for all the samples collected during this experiment. Additionally,Firmicuteswas the dominant phylum in the uterine microbiome of ZT3Chlamydiainfected mice. The results show that the time of infection is associated with the microbial dynamics in the genital tract. And this association is more robust in the upper genital tract than in the vagina. This result implies that more emphasis should be placed on understanding the changes in the microbial dynamics of the upper genital tract over the course of infection.more » « less
An official website of the United States government
