skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 18, 2026

Title: Series Solutions for Clamped Peridynamic Beams Using Fourth-Order Eigenfunctions
We propose an analytical approach to solving nonlocal generalizations of the Euler–Bernoulli beam. Specifically, we consider a version of the governing equation recently derived under the theory of peridynamics. We focus on the clamped–clamped case, employing the natural eigenfunctions of the fourth derivative subject to these boundary conditions. Static solutions under different loading conditions are obtained as series in these eigenfunctions. To demonstrate the utility of our proposed approach, we contrast the series solution in terms of fourth-order eigenfunctions to the previously obtained Fourier sine series solution. Our findings reveal that the series in fourth-order eigenfunctions achieve a given error tolerance (with respect to a reference solution) with ten times fewer terms than the sine series. The high level of accuracy of the fourth-order eigenfunction expansion is due to the fact that its expansion coefficients decay rapidly with the number of terms in the series, one order faster than the Fourier series in our examples.  more » « less
Award ID(s):
2245343
PAR ID:
10612274
Author(s) / Creator(s):
;
Editor(s):
Altenbach, Holm; Eremeyev, Victor A
Publisher / Repository:
Springer Nature Switzerland
Date Published:
ISBN:
978-3-031-75626-9
Page Range / eLocation ID:
661-678
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sixth-order boundary value problems (BVPs) arise in thin-film flows with a surface that has elastic bending resistance. We consider the case in which the elastic interface is clamped at the lateral walls of a closed trough and thus encloses a finite amount of fluid. For a slender film undergoing infinitesimal deformations, the displacement of the elastic surface from its initial equilibrium position obeys a sixth-order (in space) initial boundary value problem (IBVP). To solve this IBVP, we construct a set of odd and even eigenfunctions that intrinsically satisfy the boundary conditions (BCs) of the original IBVP. These eigenfunctions are the solutions of a non-self-adjoint sixth-order eigenvalue problem (EVP). To use the eigenfunctions for series expansions, we also construct and solve the adjoint EVP, leading to another set of even and odd eigenfunctions, which are orthogonal to the original set (biorthogonal). The eigenvalues of the adjoint EVP are the same as those of the original EVP, and we find accurate asymptotic formulas for them. Next, employing the biorthogonal sets of eigenfunctions, a Petrov–Galerkin spectral method for sixth-order problems is proposed, which can also handle lower-order terms in the IBVP. The proposed method is tested on two model sixth-order BVPs, which admit exact solutions. We explicitly derive all the necessary formulas for expanding the quantities that appear in the model problems into the set(s) of eigenfunctions. For both model problems, we find that the approximate Petrov–Galerkin spectral solution is in excellent agreement with the exact solution. The convergence rate of the spectral series is rapid, exceeding the expected sixth-order algebraic rate. 
    more » « less
  2. Todorov, M D (Ed.)
    Sixth-order boundary value problems (BVPs) arise in thin-film flows with a surface that has elastic bending resistance. To solve such problems, we first derive a complete set of odd and even orthonormal eigenfunctions — resembling trigonometric sines and cosines, as well as the so-called “beam” functions. These functions intrinsically satisfy boundary conditions (BCs) of relevance to thin-film flows, since they are the solutions of a self-adjoint sixth-order Sturm–Liouville BVP with the same BCs. Next, we propose a Galerkin spectral approach for sixth-order problems; namely the sought function as well as all its derivatives and terms appearing in the differential equation are expanded into an infinite series with respect to the derived complete orthonormal (CON) set of eigenfunctions. The unknown coefficients in the series expansion are determined by solving the algebraic system derived by taking successive inner products with each member of the CON set of eigenfunctions. The proposed method and its convergence are demonstrated by solving two model sixth-order BVPs. 
    more » « less
  3. Pappas, George; Ravikumar, Pradeep; Seshia, Sanjit A (Ed.)
    We study the problem of learning neural network models for Ordinary Differential Equations (ODEs) with parametric uncertainties. Such neural network models capture the solution to the ODE over a given set of parameters, initial conditions, and range of times. Physics-Informed Neural Networks (PINNs) have emerged as a promising approach for learning such models that combine data-driven deep learning with symbolic physics models in a principled manner. However, the accuracy of PINNs degrade when they are used to solve an entire family of initial value problems characterized by varying parameters and initial conditions. In this paper, we combine symbolic differentiation and Taylor series methods to propose a class of higher-order models for capturing the solutions to ODEs. These models combine neural networks and symbolic terms: they use higher order Lie derivatives and a Taylor series expansion obtained symbolically, with the remainder term modeled as a neural network. The key insight is that the remainder term can itself be modeled as a solution to a first-order ODE. We show how the use of these higher order PINNs can improve accuracy using interesting, but challenging ODE benchmarks. We also show that the resulting model can be quite useful for situations such as controlling uncertain physical systems modeled as ODEs. 
    more » « less
  4. In this paper, spectral methods based on conformal mappings are proposed to solve the Steklov eigenvalue problem and its related shape optimization problems in two dimensions. To apply spectral methods, we first reformulate the Steklov eigenvalue problem in the complex domain via conformal mappings. The eigenfunctions are expanded in Fourier series so the discretization leads to an eigenvalue problem for coefficients of Fourier series. For shape optimization problem, we use a gradient ascent approach to find the optimal domain which maximizes k-th Steklov eigenvalue with a fixed area for a given k. The coefficients of Fourier series of mapping functions from a unit circle to optimal domains are obtained for several different k. 
    more » « less
  5. Abstract In this paper, based on simplified Boltzmann equation, we explore the inverse-design of mesoscopic models for compressible flow using the Chapman-Enskog analysis. Starting from the single-relaxation-time Boltzmann equation with an additional source term, two model Boltzmann equations for two reduced distribution functions are obtained, each then also having an additional undetermined source term. Under this general framework and using Navier-Stokes-Fourier (NSF) equations as constraints, the structures of the distribution functions are obtained by the leading-order Chapman-Enskog analysis. Next, five basic constraints for the design of the two source terms are obtained in order to recover the NSF system in the continuum limit. These constraints allow for adjustable bulk-to-shear viscosity ratio, Prandtl number as well as a thermal energy source. The specific forms of the two source terms can be determined through proper physical considerations and numerical implementation requirements. By employing the truncated Hermite expansion, one design for the two source terms is proposed. Moreover, three well-known mesoscopic models in the literature are shown to be compatible with these five constraints. In addition, the consistent implementation of boundary conditions is also explored by using the Chapman-Enskog expansion at the NSF order. Finally, based on the higher-order Chapman-Enskog expansion of the distribution functions, we derive the complete analytical expressions for the viscous stress tensor and the heat flux. Some underlying physics can be further explored using the DNS simulation data based on the proposed model. 
    more » « less