skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Improving pulsed laser induced fluorescence distribution function analysis through matched filter signal processing
Laser induced fluorescence is used to measure argon ion heating during magnetic reconnection in the PHase Space MApping experiment (PHASMA). Sufficient signal-to-noise ratio (SNR) of the processed signal with pulsed laser injection is a delicate balance between saturation of the absorption line and injecting enough laser power to overcome the spontaneous emission of the plasma at the fluorescence wavelength. Averaging over many laser pulses and integrating over the fluorescence lifetime improves the SNR of the processed signal (processed SNR) when the SNR of the laser pulse time series is small (pulse SNR), but for laser powers small enough to avoid saturation, averaging over hundreds of pulses is needed to obtain an appreciable processed SNR over the entire Doppler-broadened absorption line. Here, we describe a matched filter processing method that significantly improves the SNR of the final measurement with fewer shots averaged. Investigation of simulated measurements validated by experimental results suggests that the matched filter method provides up to a 20% improvement in the processed SNR, resulting in less uncertainty in distribution function fits.  more » « less
Award ID(s):
1902111
PAR ID:
10612288
Author(s) / Creator(s):
; ;
Publisher / Repository:
Review of Scientific Instruments
Date Published:
Journal Name:
Review of Scientific Instruments
Volume:
95
Issue:
8
ISSN:
0034-6748
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The small signal-to-noise ratio (SNR) of conventional laser induced fluorescence (LIF) measurements using a continuous wave laser, either diode or dye, is typically overcome by amplitude modulating the laser at a specific frequency and then using lock-in amplification to extract the signal from measurement noise. Here, we present LIF measurements of the neutral helium velocity distribution function in an rf plasma using frequency modulated (FM) laser injection. A pulse train of 100% amplitude modulation is generated synthetically with a random sequence of pulse lengths. The FM signal then drives an acoustic optic modulator placed in the path of the injection beam in an LIF measurement. The signal from a fast photomultiplier tube is digitized and cross-correlated with the known modulation signal. The resultant FM-based LIF signal outperforms a conventional lock-in-based LIF measurement on the same plasma in terms of SNR and precision. 
    more » « less
  2. Generating wavelength-tunable picosecond laser pulses from an ultrafast laser source is essential for femtosecond stimulated Raman scattering (FSRS) measurements. Etalon filters produce narrowband (picosecond) pulses with an asymmetric temporal profile that is ideal for stimulated resonance Raman excitation. However, direct spectral filtering of femtosecond laser pulses is typically limited to the laser’s fundamental and harmonic frequencies due to very low transmission of broad bandwidth pulses through an etalon. Here, we show that a single etalon filter (15 cm−1 bandwidth; 172 cm−1 free spectral range) provides an efficient and tunable option for generating Raman pump pulses over a wide range of wavelengths when used in combination with an optical parametric amplifier and a second harmonic generation (SHG) crystal that has an appropriate phase-matching bandwidth for partial spectral compression before the etalon. Tuning the SHG wavelength to match individual transmission lines of the etalon filter gives asymmetric picosecond pump pulses over a range of 460–650 nm. Importantly, the SHG crystal length determines the temporal rise time of the filtered pulse, which is an important property for reducing background and increasing Raman signals compared with symmetric pulses having the same total energy. We examine the wavelength-dependent trade-off between spectral narrowing via SHG and the asymmetric pulse shape after transmission through the etalon. This approach provides a relatively simple and efficient method to generate tunable pump pulses with the optimum temporal profile for resonance-enhanced FSRS measurements across the visible region of the spectrum. 
    more » « less
  3. The accuracy of radar tracks depends strongly on the variances of the measurements, and those variances are inversely proportional to the signal-to-noise (SNR) produced the hardware and signal processor. The signal processor uses matched filter processing, and the efficiency of that depends on knowledge of the kinematics of the target. In particular, the matched filter performance depends heavily on range rate and range acceleration. Traditionally, the predicted state of the target from the track filter is used for matched filter processing, but the predicted kinematic state can have rather large errors, and those errors result in match filter loss. This loss can be very large for maneuvering (i.e., accelerating) targets. In this paper, an expected-maximization (EM) approach is taken to jointly address signal processing and tracking. The signal processor maximizes the SNR using the predicted state and produces measurements. The state estimator ( e.g., Kalman filter) uses those measurements to produce expected values of the kinematic state (i.e. the nuisance parameters). The signal processor then maximizes the SNR using the new state estimates. This process continues until the maximum likelihood values of the measurements are achieved. In this paper, the Interacting Multiple Model (IMM) estimator is introduced for the tracking function better address sudden maneuvers. The EM-Based approach to join signal processing and tracking are presented along with a discussion of the real-time computing. Monte Carlo simulation results are given to illustrate a 6 dB improvement in SNR and enhanced tracks for a maneuvering target. 
    more » « less
  4. Improving the imaging speed of multi-parametric photoacoustic microscopy (PAM) is essential to leveraging its impact in biomedicine. However, to avoid temporal overlap, the A-line rate is limited by the acoustic speed in biological tissues to a few megahertz. Moreover, to achieve high-speed PAM of the oxygen saturation of hemoglobin, the stimulated Raman scattering effect in optical fibers has been widely used to generate 558 nm from a commercial 532 nm laser for dual-wavelength excitation. However, the fiber length for effective wavelength conversion is typically short, corresponding to a small time delay that leads to a significant overlap of the A-lines acquired at the two wavelengths. Increasing the fiber length extends the time interval but limits the pulse energy at 558 nm. In this Letter, we report a conditional generative adversarial network-based approach that enables temporal unmixing of photoacoustic A-line signals with an interval as short as ∼<#comment/> 38 n s , breaking the physical limit on the A-line rate. Moreover, this deep learning approach allows the use of multi-spectral laser pulses for PAM excitation, addressing the insufficient energy of monochromatic laser pulses. This technique lays the foundation for ultrahigh-speed multi-parametric PAM. 
    more » « less
  5. In wearable optical sensing applications whose target tissue is not superficial, such as deep tissue oximetry, the task of embedded system design has to strike a balance between two competing factors. On one hand, the sensing task is assisted by increasing the radiated energy into the body, which in turn, improves the signal-to-noise ratio (SNR) of the deep tissue at the sensor. On the other hand, patient safety consideration imposes a constraint on the amount of radiated energy into the body. In this paper, we study the trade-offs between the two factors by exploring the design space of the light source activation pulse. Furthermore, we propose BASS, an algorithm that leverages the activation pulse design space exploration, which further optimizes deep tissue SNR via spectral averaging, while ensuring the radiated energy into the body meets a safe upper bound. The effectiveness of the proposed technique is demonstrated via analytical derivations, simulations, andin vivomeasurements in both pregnant sheep models and human subjects. 
    more » « less