Abstract The strange quark content of the proton is probed through the measurement of the production cross section for a W boson and a charm (c) quark in proton–proton collisions at a center-of-mass energy of 13$$\,\text {Te}\hspace{-.08em}\text {V}$$ . The analysis uses a data sample corresponding to a total integrated luminosity of 138$$\,\text {fb}^{-1}$$ collected with the CMS detector at the LHC. The W bosons are identified through their leptonic decays to an electron or a muon, and a neutrino. Charm jets are tagged using the presence of a muon or a secondary vertex inside the jet. The$$\hbox {W}+\hbox {c}$$ production cross section and the cross section ratio$$R_\textrm{c}^{\pm }= \sigma ({\hbox {W}}^{+}+\bar{\text {c}})/\sigma (\hbox {W}^{-}+{\textrm{c}})$$ are measured inclusively and differentially as functions of the transverse momentum and the pseudorapidity of the lepton originating from the W boson decay. The precision of the measurements is improved with respect to previous studies, reaching 1% in$$R_\textrm{c}^{\pm }= 0.950 \pm 0.005\,\text {(stat)} \pm 0.010 \,\text {(syst)} $$ . The measurements are compared with theoretical predictions up to next-to-next-to-leading order in perturbative quantum chromodynamics.
more »
« less
Measurement of the 40Ar(e,$$\hbox {e}^{\prime }$$) elastic scattering cross section with a novel gas-jet target
Abstract We report on a measurement of elastic electron scattering on argon performed with a novel cryogenic gas-jet target at the Mainz Microtron accelerator MAMI. The luminosity is estimated with the thermodynamical parameters of the target and by comparison to a calculation in distorted-wave Born approximation. The cross section, measured at new momentum transfers of 1.24 $$\hbox {fm}^{-1}$$ and 1.55 $$\hbox {fm}^{-1}$$ is in agreement with previous experiments performed with a traditional high-pressure gas target, as well as with modernab-initiocalculations employing state-of-the-art nuclear forces from chiral effective field theory. The nearly background-free measurement highlights the optimal properties of the gas-jet target for elements heavier than hydrogen, enabling new applications in hadron and nuclear physics.
more »
« less
- PAR ID:
- 10612337
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- The European Physical Journal A
- Volume:
- 61
- Issue:
- 7
- ISSN:
- 1434-601X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This paper presents the first measurement of$$\psi {(2S)}$$ and$$\chi _{c1}(3872)$$ meson production within fully reconstructed jets. Each quarkonium state (tag) is reconstructed via its decay to the$${{J \hspace{-1.66656pt}/\hspace{-1.111pt}\psi }} $$ ($$\rightarrow $$ $$\mu ^+\mu ^-$$ )$$\pi ^+\pi ^-$$ final state in the forward region using proton-proton collision data collected by the LHCb experiment at the center-of-mass-energy of$$13\text {TeV} $$ in 2016, corresponding to an integrated luminosity of$$1.64\,\text {\,fb} ^{-1} $$ . The fragmentation function, presented as the ratio of the quarkonium-tag transverse momentum to the full jet transverse momentum ($$p_{\textrm{T}} (\text {tag})/p_{\textrm{T}} (\text {jet})$$ ), is measured differentially in$$p_{\textrm{T}} (\text {jet})$$ and$$p_{\textrm{T}} (\text {tag})$$ bins. The distributions are separated into promptly produced quarkonia from proton-proton collisions and quarkonia produced from displacedb-hadron decays. While the displaced quarkonia fragmentation functions are in general well described by parton-shower predictions, the prompt quarkonium distributions differ significantly from fixed-order non-relativistic QCD (NRQCD) predictions followed by a QCD parton shower.more » « less
-
Abstract This work presents MARS (Modular apparatus for nuclear reactions spectroscopy) and its characterization prior to its first application to measure$$^6$$ Li+$$^{12}$$ C nuclear reactions. Measurements were performed at the 3 MV tandem accelerator of the CNA (National Accelerator Center), in Seville, Spain. The$$^{6}$$ Li projectiles were accelerated at energies around the$$^6$$ Li+$$^{12}$$ C Coulomb barrier ($$V^{\text {cm}}_{B}\sim 3.0$$ MeV - center of mass and$$V^{\text {lab}}_{B}\sim 4.5$$ MeV - laboratory frame). Using a$$^{6}\hbox {Li}^{2+}$$ beam, we measured at 13 laboratory energies from 4.00 to 7.75 MeV. Thus, we present the excitation function of$$^{12}$$ C($$^6$$ Li,$$^4$$ He)$$^{14}\hbox {N}^{g.s.}$$ reaction, at 2 backward angles ($$110.0^\circ $$ and$$140.0^\circ $$ ). The projectile dissociation, leading to this reaction, increases with the bombarding energies around the Coulomb barrier. This dissociation is favored at an optimum energy$$E_{b}^{\text {op}}$$ $$\ge $$ $$V_{B}$$ +$$|Q_{bu}|$$ , where$$V_{B}$$ is the Coulomb barrier of the system, and$$|Q_{bu}|$$ is the module ofQ-value for the$$^6$$ Li dissociation into$$^4$$ He+$$^2$$ H. This result corroborates a systematic analysis of weakly bound projectiles reacting on several targets [1].more » « less
-
Abstract Cuprous oxide ($$\hbox {Cu}{}_2\hbox {O}$$ ) has recently emerged as a promising material in solid-state quantum technology, specifically for its excitonic Rydberg states characterized by large principal quantum numbers (n). The significant wavefunction size of these highly-excited states (proportional to$$n^2$$ ) enables strong long-range dipole-dipole (proportional to$$n^4$$ ) and van der Waals interactions (proportional to$$n^{11}$$ ). Currently, the highest-lying Rydberg states are found in naturally occurring$$\hbox {Cu}_2\hbox {O}$$ . However, for technological applications, the ability to grow high-quality synthetic samples is essential. The fabrication of thin-film$$\hbox {Cu}{}_2\hbox {O}$$ samples is of particular interest as they hold potential for observing extreme single-photon nonlinearities through the Rydberg blockade. Nevertheless, due to the susceptibility of high-lying states to charged impurities, growing synthetic samples of sufficient quality poses a substantial challenge. This study successfully demonstrates the CMOS-compatible synthesis of a$$\hbox {Cu}{}_2\hbox {O}$$ thin film on a transparent substrate that showcases Rydberg excitons up to$$n = 8$$ which is readily suitable for photonic device fabrications. These findings mark a significant advancement towards the realization of scalable and on-chip integrable Rydberg quantum technologies.more » « less
-
Abstract We prove that the Hilbert scheme ofkpoints on$${\mathbb {C}}^2$$ ($$\hbox {Hilb}^k[{\mathbb {C}}^2]$$ ) is self-dual under three-dimensional mirror symmetry using methods of geometry and integrability. Namely, we demonstrate that the corresponding quantum equivariant K-theory is invariant upon interchanging its Kähler and equivariant parameters as well as inverting the weight of the$${\mathbb {C}}^\times _\hbar $$ -action. First, we find a two-parameter family$$X_{k,l}$$ of self-mirror quiver varieties of type A and study their quantum K-theory algebras. The desired quantum K-theory of$$\hbox {Hilb}^k[{\mathbb {C}}^2]$$ is obtained via direct limit$$l\longrightarrow \infty $$ and by imposing certain periodic boundary conditions on the quiver data. Throughout the proof, we employ the quantum/classical (q-Langlands) correspondence between XXZ Bethe Ansatz equations and spaces of twisted$$\hbar $$ -opers. In the end, we propose the 3d mirror dual for the moduli spaces of torsion-free rank-Nsheaves on$${\mathbb {P}}^2$$ with the help of a different (three-parametric) family of type A quiver varieties with known mirror dual.more » « less
An official website of the United States government
