Abstract In dynamic environments, animals must closely monitor the effects of their actions to inform switches in behavioral strategy. Anterior cingulate cortex (ACC) neurons track decision outcomes in these environments. Yet, it remains unclear whether ACC neurons similarly monitor behavioral history in static environments and, if so, whether these signals are distinct from movement representations. We recorded large-scale ACC activity in freely moving mice making visual evidence-accumulation decisions. Many ACC neurons exhibited nonlinear mixed selectivity for previous choices and outcomes (trial history) and were modulated by movements. Trial history could be stably decoded from population activity and accounted for a separable component of neural activity than posture and movements. Trial history encoding was conserved across different subjects and was unaffected by fluctuating behavioral biases. These findings demonstrate that trial history monitoring in ACC is implemented in a conserved population code that is independent of the volatility of subjects’ task environment.
more »
« less
Spontaneous movements and their impact on neural activity fluctuate with latent engagement states
Existing work demonstrates that animals alternate between engaged and disengaged states during perceptual decision-making. To understand the neural signature of these states, we performed cortex-wide measurements of neural activity in mice making auditory decisions. The trial-averaged magnitude of neural activity was similar in the two states. However, the trial-to-trial variance in neural activity was higher during disengagement. To understand this increased variance, we trained separate linear encoding models on neural data from each state. The models demonstrated that although task variables and task-aligned movements impacted neural activity similarly during the two states, movements that are independent of task events explained more variance during disengagement. Behavioral analyses uncovered that during disengagement, movements become uncoupled to task events. Taken together, these results argue that the neural signature of disengagement, though obscured in trial-averaged neural activity, is evident in trial-to-trial variability driven by changing patterns of spontaneous movements.
more »
« less
- Award ID(s):
- 2219946
- PAR ID:
- 10612356
- Publisher / Repository:
- bioRxiv
- Date Published:
- Subject(s) / Keyword(s):
- decision-making latent states
- Format(s):
- Medium: X
- Institution:
- bioRxiv
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Our muscles are the primary means through which we affect the external world, and the sense of agency (SoA) over the action through those muscles is fundamental to our self-awareness. However, SoA research to date has focused almost exclusively on agency over action outcomes rather than over the musculature itself, as it was believed that SoA over the musculature could not be manipulated directly. Drawing on methods from human–computer interaction and adaptive experimentation, we use human-in-the-loop Bayesian optimization to tune the timing of electrical muscle stimulation so as to robustly elicit a SoA over electrically actuated muscle movements in male and female human subjects. We use time-resolved decoding of subjects' EEG to estimate the time course of neural activity which predicts reported agency on a trial-by-trial basis. Like paradigms which assess SoA over action consequences, we found that the late (post-conscious) neural activity predicts SoA. Unlike typical paradigms, however, we also find patterns of early (sensorimotor) activity with distinct temporal dynamics predicts agency over muscle movements, suggesting that the “neural correlates of agency” may depend on the level of abstraction (i.e., direct sensorimotor feedback versus downstream consequences) most relevant to a given agency judgment. Moreover, fractal analysis of the EEG suggests that SoA-contingent dynamics of neural activity may modulate the sensitivity of the motor system to external input. SIGNIFICANCE STATEMENTThe sense of agency, the feeling of “I did that,” when directing one's own musculature is a core feature of human experience. We show that we can robustly manipulate the sense of agency over electrically actuated muscle movements, and we investigate the time course of neural activity that predicts the sense of agency over these actuated movements. We find evidence of two distinct neural processes: a transient sequence of patterns that begins in the early sensorineural response to muscle stimulation and a later, sustained signature of agency. These results shed light on the neural mechanisms by which we experience our movements as volitional.more » « less
-
Human decision making behavior is observed with choice-response time data during psychological experiments. Drift-diffusion models of this data consist of a Wiener first-passage time (WFPT) distribution and are described by cognitive parameters: drift rate, boundary separation, and starting point. These estimated parameters are of interest to neuroscientists as they can be mapped to features of cognitive processes of decision making (such as speed, caution, and bias) and related to brain activity. The observed patterns of RT also reflect the variability of cognitive processes from trial to trial mediated by neural dynamics. We adapted a SincNet-based shallow neural network architecture to fit the Drift-Diffusion model using EEG signals on every experimental trial. The model consists of a SincNet layer, a depthwise spatial convolution layer, and two separate fully connected layers that predict drift rate and boundary for each trial in-parallel. The SincNet layer parametrized the kernels in order to directly learn the low and high cutoff frequencies of bandpass filters that are applied to the EEG data to predict drift and boundary parameters. During training, model parameters were updated by minimizing the negative log likelihood function of WFPT distribution given trial RT. We developed separate decision SincNet models for each participant performing a two-alternative forced-choice task by discriminating whether a Gabor patch presented with noise is high or low spatial frequency. Our results showed that single-trial estimates of drift and boundary performed better at predicting RTs than the median estimates in both training and test data sets, suggesting that our model can successfully use EEG features to estimate meaningful single-trial Diffusion model parameters. Furthermore the shallow SincNet architecture identified time windows of information processing related to evidence accumulation and caution and the EEG frequency bands that reflect these processes within each participant.more » « less
-
Human decision making behavior is observed with choice-response time data during psychological experiments. Drift-diffusion models of this data consist of a Wiener first-passage time (WFPT) distribution and are described by cognitive parameters: drift rate, boundary separation, and starting point. These estimated parameters are of interest to neuroscientists as they can be mapped to features of cognitive processes of decision making (such as speed, caution, and bias) and related to brain activity. The observed patterns of RT also reflect the variability of cognitive processes from trial to trial mediated by neural dynamics. We adapted a SincNet-based shallow neural network architecture to fit the Drift-Diffusion model using EEG signals on every experimental trial. The model consists of a SincNet layer, a depthwise spatial convolution layer, and two separate FC layers that predict drift rate and boundary for each trial in-parallel. The SincNet layer parametrized the kernels in order to directly learn the low and high cutoff frequencies of bandpass filters that are applied to the EEG data to predict drift and boundary parameters. During training, model parameters were updated by minimizing the negative log likelihood function of WFPT distribution given trial RT. We developed separate decision SincNet models for each participant performing a two-alternative forced-choice task. Our results showed that single-trial estimates of drift and boundary performed better at predicting RTs than the median estimates in both training and test data sets, suggesting that our model can successfully use EEG features to estimate meaningful single-trial Diffusion model parameters. Furthermore, the shallow SincNet architecture identified time windows of information processing related to evidence accumulation and caution and the EEG frequency bands that reflect these processes within each participant.more » « less
-
Abstract Objective.While brain–machine interfaces (BMIs) are promising technologies that could provide direct pathways for controlling the external world and thus regaining motor capabilities, their effectiveness is hampered by decoding errors. Previous research has demonstrated the detection and correction of BMI outcome errors, which occur at the end of trials. Here we focus on continuous detection and correction of BMI execution errors, which occur during real-time movements.Approach.Two adult male rhesus macaques were implanted with Utah arrays in the motor cortex. The monkeys performed single or two-finger group BMI tasks where a Kalman filter decoded binned spiking-band power into intended finger kinematics. Neural activity was analyzed to determine how it depends not only on the kinematics of the fingers, but also on the distance of each finger-group to its target. We developed a method to detect erroneous movements, i.e. consistent movements away from the target, from the same neural activity used by the Kalman filter. Detected errors were corrected by a simple stopping strategy, and the effect on performance was evaluated.Mainresults.First we show that including distance to target explains significantly more variance of the recorded neural activity. Then, for the first time, we demonstrate that neural activity in motor cortex can be used to detect execution errors during BMI controlled movements. Keeping false positive rate below , it was possible to achieve mean true positive rate of online. Despite requiring 200 ms to detect and react to suspected errors, we were able to achieve a significant improvement in task performance via reduced orbiting time of one finger group.Significance.Neural activity recorded in motor cortex for BMI control can be used to detect and correct BMI errors and thus to improve performance. Further improvements may be obtained by enhancing classification and correction strategies.more » « less
An official website of the United States government

