In this paper, we develop a quantum theory of homogeneously curved tetrahedron geometry, by applying the combinatorial quantization to the phase space of tetrahedron shapes defined in Haggard et al (2016 Ann. Henri Poincaré 17 2001–48). Our method is based on the relation between this phase space and the moduli space of SU(2) flat connections on a 4-punctured sphere. The quantization results in the physical Hilbert space as the solution of the quantum closure constraint, which quantizes the classical closure condition , , for the homogeneously curved tetrahedron. The quantum group emerges as the gauge symmetry of a quantum tetrahedron. The physical Hilbert space of the quantum tetrahedron coincides with the Hilbert space of 4-valent intertwiners of . In addition, we define the area operators quantizing the face areas of the tetrahedron and compute the spectrum. The resulting spectrum is consistent with the usual Loop-Quantum-Gravity area spectrum in the large spin regime but is different for small spins. This work closely relates to 3+1 dimensional Loop Quantum Gravity in presence of cosmological constant and provides a justification for the emergence of quantum group in the theory.
more »
« less
Quantum curved tetrahedron, quantum group intertwiner space, and coherent states
In this paper, we construct the phase space of a constantly curved tetrahedron with fixed triangle areas in terms of a pair of Darboux coordinates called the length and twist coordinates, which are in analogy to the Fenchel–Nielsen coordinates for flat connections, and their quantization. The curvature is identified to the value of the cosmological constant, either positive or negative. The physical Hilbert space is given by the intertwiner space. We show that the quantum trace of quantum monodromies, defining the quantum length operators, form a fusion algebra and describe their representation theory. We also construct the coherent states in the physical Hilbert space labeled by the length and twist coordinates. These coherent states describe quantum curved tetrahedra and peak at points of the tetrahedron phase space. This work is closely related to 3+1 dimensional loop quantum gravity with a non-vanishing cosmological constant. The coherent states constructed herein serve as good candidates for the application to the spinfoam model with a cosmological constant.
more »
« less
- Award ID(s):
- 2110234
- PAR ID:
- 10612501
- Publisher / Repository:
- Institute of Physics
- Date Published:
- Journal Name:
- Classical and Quantum Gravity
- Volume:
- 42
- Issue:
- 6
- ISSN:
- 0264-9381
- Page Range / eLocation ID:
- 065005
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We show that the affine vertex superalgebra V^{k}(\mathfrak{osp}_{1|2n})at generic level 𝑘 embeds in the equivariant 𝒲-algebra of \mathfrak{sp}_{2n}times 4nfree fermions.This has two corollaries:(1) it provides a new proof that, for generic 𝑘, the coset \operatorname{Com}(V^{k}(\mathfrak{sp}_{2n}),V^{k}(\mathfrak{osp}_{1|2n}))is isomorphic to \mathcal{W}^{\ell}(\mathfrak{sp}_{2n})for \ell=-(n+1)+(k+n+1)/(2k+2n+1), and(2) we obtain the decomposition of ordinary V^{k}(\mathfrak{osp}_{1|2n})-modules into V^{k}(\mathfrak{sp}_{2n})\otimes\mathcal{W}^{\ell}(\mathfrak{sp}_{2n})-modules.Next, if 𝑘 is an admissible level and ℓ is a non-degenerate admissible level for \mathfrak{sp}_{2n}, we show that the simple algebra L_{k}(\mathfrak{osp}_{1|2n})is an extension of the simple subalgebra L_{k}(\mathfrak{sp}_{2n})\otimes{\mathcal{W}}_{\ell}(\mathfrak{sp}_{2n}).Using the theory of vertex superalgebra extensions, we prove that the category of ordinary L_{k}(\mathfrak{osp}_{1|2n})-modules is a semisimple, rigid vertex tensor supercategory with only finitely many inequivalent simple objects.It is equivalent to a certain subcategory of \mathcal{W}_{\ell}(\mathfrak{sp}_{2n})-modules.A similar result also holds for the category of Ramond twisted modules.Due to a recent theorem of Robert McRae, we get as a corollary that categories of ordinary L_{k}(\mathfrak{sp}_{2n})-modules are rigid.more » « less
-
This is the first of our papers on quasi-split affine quantum symmetric pairs , focusing on the real rank one case, i.e., equipped with a diagram involution. We construct explicitly a relative braid group action of type on the affine quantum group . Real and imaginary root vectors for are constructed, and a Drinfeld type presentation of is then established. This provides a new basic ingredient for the Drinfeld type presentation of higher rank quasi-split affine quantum groups in the sequels.more » « less
-
The question of when a vertex algebra is a quantization of the arc space of its associated scheme has recently received a lot of attention in both the mathematics and physics literature. This property was first studied by Tomoyuki Arakawa and Anne Moreau (see their paper in the references), and was given the name \lq\lq classical freeness by Jethro van Ekeren and Reimundo Heluani [Comm. Math. Phys. 386 (2021), no. 1, pp. 495-550] in their work on chiral homology. Later, it was extended to vertex superalgebras by Hao Li [Eur. J. Math. 7 (2021), pp. 1689–1728]. In this note, we prove the classical freeness of the simple affine vertex superalgebra for all positive integers satisfying . In particular, it holds for the rational vertex superalgebras for all positive integers .more » « less
-
For , the generalized Kasner solutions (which we refer to as Kasner solutions for short) are a family of explicit solutions to various Einstein-matter systems that, exceptional cases aside, start out smooth but then develop a Big Bang singularity as , i.e., a singularity along an entire spacelike hypersurface, where various curvature scalars blow up monotonically. The family is parameterized by the Kasner exponents , which satisfy two algebraic constraints. There are heuristics in the mathematical physics literature, going back more than 50 years, suggesting that the Big Bang formation should be dynamically stable, that is, stable under perturbations of the Kasner initial data, given say at , as long as the exponents are “sub-critical” in the following sense: . Previous works have rigorously shown the dynamic stability of the Kasner Big Bang singularity under stronger assumptions: (1) the Einstein-scalar field system with and , which corresponds to the stability of the Friedmann–Lemaître–Robertson–Walker solution’s Big Bang or (2) the Einstein-vacuum equations for with . In this paper, we prove that the Kasner singularity is dynamically stable forallsub-critical Kasner exponents, thereby justifying the heuristics in the literature in the full regime where stable monotonic-type curvature-blowup is expected. We treat in detail the -dimensional Einstein-scalar field system for all and the -dimensional Einstein-vacuum equations for ; both of these systems feature non-empty sets of sub-critical Kasner solutions. Moreover, for the Einstein-vacuum equations in dimensions, where instabilities are in general expected, we prove that all singular Kasner solutions have dynamically stable Big Bangs under polarized -symmetric perturbations of their initial data. Our results hold for open sets of initial data in Sobolev spaces without symmetry, apart from our work on polarized -symmetric solutions. Our proof relies on a new formulation of Einstein’s equations: we use a constant-mean-curvature foliation, and the unknowns are the scalar field, the lapse, the components of the spatial connection and second fundamental form relative to a Fermi–Walker transported spatial orthonormal frame, and the components of the orthonormal frame vectors with respect to a transported spatial coordinate system. In this formulation, the PDE evolution system for the structure coefficients of the orthonormal frame approximately diagonalizes in a way that sharply reveals the significance of the Kasner exponent sub-criticality condition for the dynamic stability of the flow: the condition leads to the time-integrability of many terms in the equations, at least at the low derivative levels. At the high derivative levels, the solutions that we study can be much more singular with respect to , and to handle this difficulty, we use -weighted high order energies, and we control non-linear error terms by exploiting monotonicity induced by the -weights and interpolating between the singularity-strength of the solution’s low order and high order derivatives. Finally, we note that our formulation of Einstein’s equations highlights the quantities that might generate instabilities outside of the sub-critical regime.more » « less
An official website of the United States government

