Climate change is expected to intensify the effects of extreme weather events on power systems and increase the frequency of severe power outages. The large-scale integration of environment-dependent renewables during energy decarbonization could induce increased uncertainty in the supply–demand balance and climate vulnerability of power grids. This Perspective discusses the superimposed risks of climate change, extreme weather events and renewable energy integration, which collectively affect power system resilience. Insights drawn from large-scale spatiotemporal data on historical US power outages induced by tropical cyclones illustrate the vital role of grid inertia and system flexibility in maintaining the balance between supply and demand, thereby preventing catastrophic cascading failures. Alarmingly, the future projections under diverse emission pathways signal that climate hazards — especially tropical cyclones and heatwaves — are intensifying and can cause even greater impacts on the power grids. High-penetration renewable power systems under climate change may face escalating challenges, including more severe infrastructure damage, lower grid inertia and flexibility, and longer post-event recovery. Towards a net-zero future, this Perspective then explores approaches for harnessing the inherent potential of distributed renewables for climate resilience through forming microgrids, aligned with holistic technical solutions such as grid-forming inverters, distributed energy storage, cross-sector interoperability, distributed optimization and climate–energy integrated modelling.
more »
« less
This content will become publicly available on June 2, 2026
Cross-sector energy system resilience and interdependence in a changing climate
Rapid global electrification is deepening cross-sector interdependence, fundamentally reshaping the resilience of energy systems in the face of intensifying climate extremes. While increased integration across energy generation, transmission, and consumption sectors can significantly enhance operational flexibility, it can also amplify the risk of cross-sector cascading failures under extreme weather events, giving rise to an emerging resilience paradox that remains insufficiently understood. This study examines evolving cross-sector interactions and their implications for climate resilience by analyzing global electrification trends and regional cases in Texas, integrated with global and downscaled projections of climate extremes. By identifying critical vulnerabilities and flexibility associated with increasing sectoral interdependence, this study highlights the necessity of adopting resilience-oriented, system-level strategies for system operators and policymakers to mitigate cross-sector cascading risks and maximize the benefits of electrification in a changing climate.
more »
« less
- Award ID(s):
- 2103754
- PAR ID:
- 10613022
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Joule
- Volume:
- 9
- Issue:
- 6
- ISSN:
- 2542-4351
- Page Range / eLocation ID:
- 101967
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Quantifying cascading power outages during climate extremes considering renewable energy integrationClimate extremes, such as hurricanes, combined with large-scale integration of environment-sensitive renewables, could exacerbate the risk of widespread power outages. We introduce a coupled climate-energy model for cascading power outages, which comprehensively captures the impacts of climate extremes on renewable generation, and transmission and distribution networks. The model is validated with the 2022 Puerto Rico catastrophic blackout during Hurricane Fiona – a unique system-wide blackout event with complete records of weather-induced outages. The model reveals a resilience pattern that was not captured by the previous models: early failure of certain critical components enhances overall system resilience. Sensitivity analysis on various scenarios of behind-the-meter solar integration demonstrates that lower integration levels (below 45%, including the current level) exhibit minimal impact on system resilience in this event. However, surpassing this critical level without pairing it with energy storage can exacerbate the probability of catastrophic blackouts.more » « less
-
As one of the components comprising food-energy-water systems (FEWS), the energy sector, especially electricity production, is intimately connected to water. Climate extremes-related impacts on water resources will directly affect the interdependence of water, food, and energy. A better understanding of the extent of climate impacts on energy sector and the options to improve water-energy security are needed for planning an overall resilient FEWS. Therefore, we are motivated to examine the climate stress on the thermoelectric power supply using the Water Balance Model coupled with Thermoelectric Power & Thermal Pollution Model (WBM-TP2M), which can simulate water-energy linkages at the power plant, river reach, and regional scales. Using the Midwest (MW) and Northeast (NE) regions as our study area, we design a group of single- and multi-factor experiments both for historical climate period (1980–2019) and a case where we create a series of intensified extremes (2010–2019). The results show that power generation over the two regions features a gradually increasing trend in the past four decades, while, in contrast, thermal pollution has been decreasing steadily since 2005. Heat waves created temporary dips in the generation of electricity and peaks of heavily thermal-polluted stream length. The experiments reveal the significant role of cooling towers in reducing thermal pollution without losing much capacity to generate power, one important measure of resilience against climate extremes. Constraints placed on effluent temperature from the Clean Water Act lead to interrupted operations, which reduces (up to 20%) power generation, increases sensitivity to climatic extremes, but only show a small reduction in thermal pollution. Coal, as a fuel source, is subject to low thermal efficiency and high-water demand, which results in clearly decreased power generation. Overall, our findings suggest that replacing a less thermal-efficient fuel mix and environmentally destructive once-through cooling can move the energy sector towards several beneficial outcomes. Chief among these is a more efficient power production system that uses less water and does so while fostering clean, less carbon-intense technologies (e.g., combined gas cycle turbines, cooling towers, renewable energy), thus linking positive outcomes that simultaneously and positively impact aquatic ecosystems, regional airsheds and human health.more » « less
-
This study explicates a concept of transactive resilience for cross-sector disaster communication via integrating the transactive memory system and the network theory of social capital. The concept was validated through n=34 in-depth interviews with key disaster-responding organizations (public, private, and nonprofits sectors) of a U.S. city. Findings indicate that transactive resilience network is built on strong relational trust (interpersonal and informal relationships), perceived expertise (consensus/accuracy), and coordination and communication (two-way, flexibility, and optimal network characteristics).more » « less
-
Angelakis, Andreas (Ed.)Traditional centralized water systems are facing sustainability challenges due to climate and socioeconomic changes, extreme weather events, and aging infrastructure and their uncertainties. The energy sector has addressed similar challenges using the microgrid approach, which involves decentralized energy sources and their supply, improving system resilience and sustainable energy supply. This study investigated the resilience effects of water microgrids, which feature operational interactions between centralized and local systems for sustainable water supply. A lab-scale water distribution model was tested to demonstrate centralized, decentralized, and microgrid water systems under the disruption scenarios of pump shutdown, pump rate manipulation, and pipe leaks/bursts. The water microgrids integrate centralized and local systems’ operations, while the decentralized system operates independently. Then, functionality-based resilience and its attributes were evaluated for each disruption scenario. The results reveal that, overall, the microgrid configuration, with increased water supply redundancy and flexible operational adjustment based on system conditions, showed higher resilience, robustness, and recovery rate and a lower loss rate across disruption scenarios. The resilience effect of water microgrids was more evident with longer and more severe disruptions. Considering global challenges in water security under climate and socioeconomic changes, the findings suggest insights into a hybrid water system as a strategy to enhance resilience and water use efficiency and provide adaptive operations for sustainable water supply.more » « less
An official website of the United States government
