skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 3, 2026

Title: Coupled, decoupled, and abrupt responses of vegetation to climate across timescales
Climate and ecosystem dynamics vary across timescales, but research into climate-driven vegetation dynamics usually focuses on singular timescales. We developed a spectral analysis–based approach that provides detailed estimates of the timescales at which vegetation tracks climate change, from 101to 105years. We report dynamic similarity of vegetation and climate even at centennial frequencies (149−1to 18,012−1year−1, that is, one cycle per 149 to 18,012 years). A breakpoint in vegetation turnover (797−1year−1) matches a breakpoint between stochastic and autocorrelated climate processes, suggesting that ecological dynamics are governed by climate across these frequencies. Heightened vegetation turnover at millennial frequencies (4650−1year−1) highlights the risk of abrupt responses to climate change, whereas vegetation-climate decoupling at frequencies >149−1year−1may indicate long-lasting consequences of anthropogenic climate change for ecosystem function and biodiversity.  more » « less
Award ID(s):
2410961 2410963 2410966 2410967
PAR ID:
10613111
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; « less
Publisher / Repository:
AAAS
Date Published:
Journal Name:
Science
Volume:
389
Issue:
6755
ISSN:
0036-8075
Page Range / eLocation ID:
64 to 68
Subject(s) / Keyword(s):
Spectral power continuum community turnover climate variability dynamic equilibrium non- linear ecological dynamics temporal beta diversity vegetation
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Given the current rates of climate change, with associated shifts in herbivore population densities, understanding the role of different herbivores in ecosystem functioning is critical for predicting ecosystem responses. Here, we examined how migratory geese and resident, non‐migratory reindeer—two dominating yet functionally contrasting herbivores—control vegetation and ecosystem processes in rapidly warming Arctic tundra.We collected vegetation and ecosystem carbon (C) flux data at peak plant growing season in the two longest running, fully replicated herbivore removal experiments found in high‐Arctic Svalbard. Experiments had been set up independently in wet habitat utilised by barnacle geeseBranta leucopsisin summer and in moist‐to‐dry habitat utilised by wild reindeerRangifer tarandus platyrhynchusyear‐round.Excluding geese induced vegetation state transitions from heavily grazed, moss‐dominated (only 4 g m−2of live above‐ground vascular plant biomass) to ungrazed, graminoid‐dominated (60 g m−2after 4‐year exclusion) and horsetail‐dominated (150 g m−2after 15‐year exclusion) tundra. This caused large increases in vegetation C and nitrogen (N) pools, dead biomass and moss‐layer depth. Alterations in plant N concentration and CN ratio suggest overall slower plant community nutrient dynamics in the short‐term (4‐year) absence of geese. Long‐term (15‐year) goose removal quadrupled net ecosystem C sequestration (NEE) by increasing ecosystem photosynthesis more than ecosystem respiration (ER).Excluding reindeer for 21 years also produced detectable increases in live above‐ground vascular plant biomass (from 50 to 80 g m−2; without promoting vegetation state shifts), as well as in vegetation C and N pools, dead biomass, moss‐layer depth and ER. Yet, reindeer removal did not alter the chemistry of plants and soil or NEE.Synthesis. Although both herbivores were key drivers of ecosystem structure and function, the control exerted by geese in their main habitat (wet tundra) was much more pronounced than that exerted by reindeer in their main habitat (moist‐to‐dry tundra). Importantly, these herbivore effects are scale dependent, because geese are more spatially concentrated and thereby affect a smaller portion of the tundra landscape compared to reindeer. Our results highlight the substantial heterogeneity in how herbivores shape tundra vegetation and ecosystem processes, with implications for ongoing environmental change. 
    more » « less
  2. In both continuous and fragmented seagrass ecosystems, the vegetation edge can be a location of abrupt hydrodynamic change, with impacts to both ecological and physical processes. We address how flow and wave activity change across seagrass meadow edges and the effects of vegetation on sediment dynamics and bivalve recruitment. TwoZostera marinaseagrass meadow sites were monitored: a high-density site with >500 shoots m-2and a low-density site with <250 shoots m-2. Mean flow velocities were significantly reduced in seagrass vegetation adjacent to edges, with reductions compared to unvegetated areas ranging from 30-75%. Recruitment of juvenile bivalves was significantly elevated within vegetation. No significant differences in wave activity or sediment suspension and/or deposition were found spatially across a 10 m distance from a seagrass edge, but significant temporal variability was observed, caused by periodic storms. Wave height was a major predictor for sediment movement along seagrass edges, with an observed 10-fold increase in sediment collection within benthic traps following severe storms. These results were found across various heterogeneous edge configurations and reveal abrupt hydrodynamic responses of both mean flow and turbulence to occur at short spatial scales (1-10 m), with changes to wave and sediment deposition and/or suspension conditions only occurring over larger spatial distances (~100 m). Changes to the hydrodynamic regime were therefore found to be driven by meteorological conditions (e.g. winds, storms) on daily timescales and by changes in seagrass shoot density, altering both bivalve recruitment and sediment dynamics on longer temporal and/or spatial timescales. 
    more » « less
  3. Abstract The southern Great Plains of the USA has great potential to produce biofuel feedstock while minimizing the dual stresses of woody plant encroachment and climate change. Switchgrass (Panicum virgatum) cultivation, woody biomass captured during removal of the encroaching eastern redcedar (Juniperus virginiana) to restore grasslands and thinning of the native oak forest can provide an integrated source of feedstock and improve ecosystem services. In north‐central Oklahoma, we quantified productivity and ecosystem water use of switchgrass stands and degraded ecosystems encroached by eastern redcedar and compared these to native oak forest and tallgrass prairie ecosystems. We measured aboveground net primary productivity (ANPP) using allometric equations (trees) and clip plots (herbaceous), and evapotranspiration (ET) using a water balance approach from gauged watersheds, and calculated water use efficiency (WUE = ANPP/ET) from 2016 to 2019. Among vegetation cover types, ANPP averaged 5.1, 5.4, 6.0, and 7.8 Mg ha−1 year−1for the prairie, oak, eastern redcedar, and switchgrass watersheds and was significantly greater for switchgrass in 2018 and 2019 (2 and 3 years post establishment) when it reached 8.6 Mg ha−1 year−1. Averaged across 2017–2019, ET was significantly greater in the forested watersheds than the grassland watersheds (1022 mm year−1for eastern redcedar, 1025 mm year−1for oak, 874 mm year−1for prairie, and 828 mm year−1for switchgrass). The mean WUE was significantly greater (9.47 kg ha−1 mm−1) for switchgrass than for the prairie, eastern redcedar, and oak cover types (6.03, 6.02, and 5.31 kg ha−1 mm−1). Switchgrass offered benefits of greater ANPP, less ET, and greater WUE. Our findings indicate that an integrated biofuel feedstock system that includes converting eastern redcedar encroached areas to switchgrass and thinning the oak forest can increase productivity, increase runoff to streams, and improve ecosystem services. 
    more » « less
  4. Abstract The frequency of salt marsh dieback events has increased over the last 25 years with unknown consequences to the resilience of the ecosystem to accelerated sea level rise (SLR). Salt marsh ecosystems impacted by sudden vegetation dieback events were previously thought to recover naturally within a few months to years. In this study, we used a 13‐year collection of remotely sensed imagery to provide evidence that approximately 14% of total marsh area has not revegetated 10 years after a dieback event in Charleston, SC. Dieback onset coincided with a severe drought in 2012, as indicated by the Palmer drought stress index. A second dieback event occurred in 2016 after a historic flood influenced by Hurricane Joaquin in 2015. Unvegetated zones reached nearly 30% of the total marsh area in 2017. We used a light detection and ranging‐derived digital elevation model to determine that most affected areas were associated with lower elevation zones in the interior of the marsh. Further, restoration by grass planting was effective, with pilot‐scale restored plots having greater aboveground biomass than reference sites after two years of transplanting. A positive outcome indicated that the stressors that caused the dieback are no longer present. Despite that, many affected areas have not recovered naturally, even though they are located within the typical elevation range of healthy marshes. A mechanistic modeling approach was used to assess the effects of vegetation dieback on salt marsh resilience to SLR. Predictions indicate that a highly productive restored marsh (2000 g m−2 year−1) would persist at a moderate SLR rate of 60 cm in 100 years, whereas a nonrestored mudflat would lose all its elevation capital after 100 years. Thus, rapid restoration of marsh dieback is critical to avoid further degradation. Also, failure to incorporate the increasing frequency and intensity of extreme climatic events that trigger irreversible marsh diebacks underestimates salt marsh vulnerability to climate change. Finally, at an elevated SLR rate of 122 cm in 100 years, which is most likely an extreme climate change scenario, even highly productive ecosystems augmented by sediment placement would not keep pace with SLR. Thus, climate change mitigation actions are also urgently needed to preserve present‐day marsh ecosystems. 
    more » « less
  5. Abstract Fine‐scale microclimate variation due to complex topography can shape both current vegetation distributional patterns and how vegetation responds to changing climate. Topographic heterogeneity in mountains is hypothesized to mediate responses to regional climate change at the scale of metres. For alpine vegetation especially, the interplay between changing temperatures and topographically mediated variation in snow accumulation will determine the overall impact of climate change on vegetation dynamics.We combined 30 years of co‐located measurements of temperature, snow and alpine plant community composition in Colorado, USA, to investigate vegetation community trajectories across a snow depth gradient.Our analysis of long‐term trends in plant community composition revealed notable directional change in the alpine vegetation with warming temperatures. Furthermore, community trajectories are divergent across the snow depth gradient, with exposed parts of the landscape that experience little snow accumulation shifting towards stress‐tolerant, cold‐ and drought‐adapted communities, while snowier areas shifted towards more warm‐adapted communities.Synthesis: Our findings demonstrate that fine‐scale topography can mediate both the magnitude and direction of vegetation responses to climate change. We documented notable shifts in plant community composition over a 30‐year period even though alpine vegetation is known for slow dynamics that often lag behind environmental change. These results suggest that the processes driving alpine plant population and community dynamics at this site are strong and highly heterogeneous across the complex topography that is characteristic of high‐elevation mountain systems. 
    more » « less