This dataset contains field measurements taken during water sampling from 100 urban stream locations in the greater Miami, Florida metropolitan area. Field collection took place during five synoptic sampling events: Summer 2021 (Wet; July 8 to July 27), Fall 2021 (Wet; September 27 to October 7), Winter 2022 (Dry; January 3 to January 13), Spring 2022 (Dry; April 7 to April 23), and Summer 2022 (Wet; June 1 to June 13) to capture spatial and seasonal variation in stream conditions (specific conductivity, water temperature, dissolved oxygen, pH). Filtered stream samples were analyzed for dissolved organic carbon concentration and characteristics, available in a separate dataset. These data were collected as part of the Carbon in Urban Rivers Biogeochemistry (CURB) Project. Detailed field data and site data are published separately and can be linked using the “curbid” and “synoptic_event” columns in each dataset.
more »
« less
Field data for seasonal synoptic sampling of 100 urban streams in Salt Lake City, Utah (USA), 2023-2024
This dataset contains field measurements taken during water sampling from 100 urban stream locations in the greater Salt Lake City, Utah (USA) metropolitan area. Field collection took place during four synoptic sampling events (July 2022, October 2022, February 2023, and May 2023) to capture spatial and seasonal variation in stream conditions (specific conductivity, water temperature, dissolved oxygen, pH, ORP). Filtered stream samples were analyzed for dissolved organic carbon concentration and characteristics, available in a separate dataset. These data were collected as part of the Carbon in Urban Rivers Biogeochemistry (CURB) Project. Detailed field data and site data are published separately and can be linked using the “curbid” and “synoptic_event” columns in each dataset.
more »
« less
- PAR ID:
- 10613233
- Publisher / Repository:
- Environmental Data Initiative
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This dataset contains dissolved organic carbon concentrations from surface water samples collected at 100 urban stream locations in the greater Salt Lake City, Utah metropolitan area. Samples were collected four times (July 2022, October 2022, February 2023, and May 2023) to capture spatial and seasonal variation in DOC concentrations. Filtered stream samples were analyzed for dissolved organic carbon concentration. These data were collected as part of the Carbon in Urban Rivers Biogeochemistry (CURB) Project. Detailed field data and site data are published separately and can be linked using the “curbid” and “synoptic_event” columns in each dataset.more » « less
-
This dataset contains dissolved organic carbon concentrations from surface water samples collected at 100 urban stream and canal locations in the greater Miami, Florida metropolitan area. Samples were collected five times across different seasons to capture spatial and seasonal variation in DOC concentration. These events include the wet seasons of 2021 and 2022, as well as the dry season of 2022, specifically: Summer 2021 (Wet; July 8 to July 27), Fall 2021 (Wet; September 27 to October 7), Winter 2022 (Dry; January 3 to January 13), Spring 2022 (Dry; April 7 to April 23), and Summer 2022 (Wet; June 1 to June 13). These data were collected as part of the Carbon in Urban Rivers Biogeochemistry (CURB) Project. Detailed field data and site data are published separately and can be linked using the “curbid” and “synoptic_event” columns in each dataset.more » « less
-
This dataset contains dissolved organic matter (DOM) characteristics from surface water samples collected at 100 urban stream and canal locations in the greater Miami, Florida metropolitan area. Samples were collected five times across different seasons to capture spatial and seasonal variation in DOC concentration. These events include the wet seasons of 2021 and 2022, as well as the dry season of 2022, specifically: Summer 2021 (Wet; July 8 to July 27), Fall 2021 (Wet; September 27 to October 7), Winter 2022 (Dry; January 3 to January 13), Spring 2022 (Dry; April 7 to April 23), and Summer 2022 (Wet; June 1 to June 13). Fluorescent optical properties were measured on filtered water samples to understand the chemical composition of DOM. Excitation-Emission Matrices (EEMs) were measured using a Horiba Aqualog spectrometer. DOM characteristics were quantified using both standard fluorescence and absorbance metrics as well as through parallel factor (PARAFAC) analysis. These data were collected as part of the Carbon in Urban Rivers Biogeochemistry (CURB) Project. Detailed field data and site data are published separately and can be linked using the “curbid” and “synoptic_event” columns in each dataset.more » « less
-
We collected this data to better understand the timing of peak benthic cyanobacterial mat occurrence (specifically taxa associated with anatoxin production, Microcoleus and Anabaena) and mat anatoxin concentrations in rivers. We sampled in northern California on the South Fork Eel, Salmon, and Russian Rivers biweekly in 2022, and the Salmon River biweekly and South Fork Eel weekly in 2023. During each sampling event, we conducted benthic cover surveys, measured in-situ water quality parameters (temperature, pH, dissolved oxygen, conductivity), and collected surface water samples and targeted cyanobacteria samples. In 2022 on all rivers and in 2023 at the Salmon River, we also collected distributed non-targeted periphyton samples to characterize full-reach community compositions. All sampling was completed in 150-m reaches upstream of sensors recording continuous dissolved oxygen, conductivity, and temperature data. We analyzed surface water samples for nitrate, ammonium, soluble reactive phosphate, total dissolved carbon, and dissolved organic carbon. We also analyzed surface water samples from 2022 for major anions (Cl, SO4, Br) and cations (Na, K, Mg, Ca). Targeted-cyanobacteria and non-target periphyton samples were analyzed for anatoxins, relative abundance of algal taxa (via microscopy), ash-free dry mass, and chlorophyll-a. To estimate mean river depth within the dissolved oxygen footprint upstream of sensors, we kayaked portions of the river and collected river depth measurements. We also measured discharge at each river excluding the Salmon River (due to high discharge) and completed pebble counts at the South Fork Eel River to obtain sediment grain size distributions.more » « less
An official website of the United States government
