skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Augmenting Engineering Design With AI: Introducing the AI Design Assistant (AIDA)
It’s critical to understand how to use artificial intelligence (AI) to foster innovation in the modern world as AI becomes more integrated into creative and problem-solving tasks. Using the sustainable washing machine as a primary example, this study designed and developed AI design assistant AIDA as a web-based chatbot to facilitate design ideation, leveraging large language models. AIDA prompts design tasks and assesses user-generated ideas for validity, novelty, and feasibility using RoBERTa-based models. As in the initial phase of an ongoing project, we conducted a human-subject experiment to validate a baseline version of AIDA and examined user performance and perceptions. The participants demonstrated smooth interaction with AIDA and consistent performance. They reported mostly positive perceived usefulness, enjoyment, and trust. Moreover, females and participants equal to or over 25 showed a comparable level of trust for general automated systems and AIDA, whereas male and under 25 participants were more skeptical about AIDA. This research offers a framework for technical development, tailored interactions, and real-time feedback, as well as insights into the use of AI chatbots to mediate engineering design. By analyzing user behavior and survey responses, we identified future directions in designing AI systems in engineering education and early-stage design.  more » « less
Award ID(s):
2301846
PAR ID:
10613244
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Society of Mechanical Engineers
Date Published:
ISBN:
978-0-7918-8840-7
Format(s):
Medium: X
Location:
Washington, DC, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. The mental health crisis in the United States spotlights the need for more scalable training for mental health workers. While present-day AI systems have sparked hope for addressing this problem, we must not be too quick to incorporate or solely focus on technological advancements. We must ask empirical questions about how to ethically collaborate with and integrate autonomous AI into the clinical workplace. For these Human-Autonomy Teams (HATs), poised to make the leap into the mental health domain, special consideration around the construct of trust is in order. A reflexive look toward the multidisciplinary nature of such HAT projects illuminates the need for a deeper dive into varied stakeholder considerations of ethics and trust. In this paper, we investigate the impact of domain---and the ranges of expertise within domains---on ethics- and trust-related considerations for HATs in mental health. We outline our engagement of 23 participants in two speculative activities: design fiction and factorial survey vignettes. Grounded by a video storyboard prototype, AI- and Psychotherapy-domain experts and novices alike imagined TEAMMAIT, a prospective AI system for psychotherapy training. From our inductive analysis emerged 10 themes surrounding ethics, trust, and collaboration. Three can be seen as substantial barriers to trust and collaboration, where participants imagined they would not work with an AI teammate that didn't meet these ethical standards. Another five of the themes can be seen as interrelated, context-dependent, and variable factors of trust that impact collaboration with an AI teammate. The final two themes represent more explicit engagement with the prospective role of an AI teammate in psychotherapy training practices. We conclude by evaluating our findings through the lens of Mayer et al.'s Integrative Model of Organizational Trust to discuss the risks of HATs and adapt models of ability-, benevolence-, and integrity-based trust. These updates motivate implications for the design and integration of HATs in mental health work. 
    more » « less
  2. Explanations can help users of Artificial Intelligent (AI) systems gain a better understanding of the reasoning behind the model’s decision, facilitate their trust in AI, and assist them in making informed decisions. Due to its numerous benefits in improving how users interact and collaborate with AI, this has stirred the AI/ML community towards developing understandable or interpretable models to a larger degree, while design researchers continue to study and research ways to present explanations of these models’ decisions in a coherent form. However, there is still the lack of intentional design effort from the HCI community around these explanation system designs. In this paper, we contribute a framework to support the design and validation of explainable AI systems; one that requires carefully thinking through design decisions at several important decision points. This framework captures key aspects of explanations ranging from target users, to the data, to the AI models in use. We also discuss how we applied our framework to design an explanation interface for trace link prediction of software artifacts. 
    more » « less
  3. The rise of complex AI systems in healthcare and other sectors has led to a growing area of research called Explainable AI (XAI) designed to increase transparency. In this area, quantitative and qualitative studies focus on improving user trust and task performance by providing system- and prediction-level XAI features. We analyze stakeholder engagement events (interviews and workshops) on the use of AI for kidney transplantation. From this we identify themes which we use to frame a scoping literature review on current XAI features. The stakeholder engagement process lasted over nine months covering three stakeholder group's workflows, determining where AI could intervene and assessing a mock XAI decision support system. Based on the stakeholder engagement, we identify four major themes relevant to designing XAI systems – 1) use of AI predictions, 2) information included in AI predictions, 3) personalization of AI predictions for individual differences, and 4) customizing AI predictions for specific cases. Using these themes, our scoping literature review finds that providing AI predictions before, during, or after decision-making could be beneficial depending on the complexity of the stakeholder's task. Additionally, expert stakeholders like surgeons prefer minimal to no XAI features, AI prediction, and uncertainty estimates for easy use cases. However, almost all stakeholders prefer to have optional XAI features to review when needed, especially in hard-to-predict cases. The literature also suggests that providing both system and prediction-level information is necessary to build the user's mental model of the system appropriately. Although XAI features improve users' trust in the system, human-AI team performance is not always enhanced. Overall, stakeholders prefer to have agency over the XAI interface to control the level of information based on their needs and task complexity. We conclude with suggestions for future research, especially on customizing XAI features based on preferences and tasks. 
    more » « less
  4. Abstract—We conduct the first large-scale user study examining how users interact with an AI Code assistant to solve a variety of security related tasks across different programming languages. Overall, we find that participants who had access to an AI assistant based on OpenAI’s codex-davinci-002 model wrote significantly less secure code than those without access. Additionally, participants with access to an AI assistant were more likely to believe they wrote secure code than those without access to the AI assistant. Furthermore, we find that participants who trusted the AI less and engaged more with the language and format of their prompts (e.g. re-phrasing, adjusting temperature) provided code with fewer security vulnerabilities. Finally, in order to better inform the design of future AI-based Code assistants, we provide an in-depth analysis of participants’ language and interaction behavior, as well as release our user interface as an instrument to conduct similar studies in the future. 
    more » « less
  5. Proper calibration of human reliance on AI is fundamental to achieving complementary performance in AI-assisted human decision-making. Most previous works focused on assessing user reliance, and more broadly trust, retrospectively, through user perceptions and task-based measures. In this work, we explore the relationship between eye gaze and reliance under varying task difficulties and AI performance levels in a spatial reasoning task. Our results show a strong positive correlation between percent gaze duration on the AI suggestion and user AI task agreement, as well as user perceived reliance. Moreover, user agency is preserved particularly when the task is easy and when AI performance is low or inconsistent. Our results also reveal nuanced differences between reliance and trust. We discuss the potential of using eye gaze to gauge human reliance on AI in real-time, enabling adaptive AI assistance for optimal human-AI team performance. 
    more » « less