skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 23, 2026

Title: Closed-Form Diffusion Models
Score-based generative models (SGMs) sample from a target distribution by iteratively transforming noise using the score function of the perturbed target. For any finite training set, this score function can be evaluated in closed form, but the resulting SGM memorizes its training data and does not generate novel samples. In practice, one approximates the score by training a neural network via score-matching. The error in this approximation promotes generalization, but neural SGMs are costly to train and sample, and the effective regularization this error provides is not well-understood theoretically. In this work, we instead explicitly smooth the closed-form score to obtain an SGM that generates novel samples without training. We analyze our model and propose an efficient nearest-neighbor-based estimator of its score function. Using this estimator, our method achieves competitive sampling times while running on consumer-grade CPUs.  more » « less
Award ID(s):
2335492
PAR ID:
10613315
Author(s) / Creator(s):
; ;
Publisher / Repository:
OpenReview
Date Published:
Journal Name:
Transactions on machine learning research
ISSN:
2835-8856
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Significant advances have been made recently on training neural networks, where the main challenge is in solving an optimization problem with abundant critical points. However, existing approaches to address this issue crucially rely on a restrictive assumption: the training data is drawn from a Gaussian distribution. In this paper, we provide a novel unified framework to design loss functions with desirable landscape properties for a wide range of general input distributions. On these loss functions, remarkably, stochastic gradient descent theoretically recovers the true parameters with global initializations and empirically outperforms the existing approaches. Our loss function design bridges the notion of score functions with the topic of neural network optimization. Central to our approach is the task of estimating the score function from samples, which is of basic and independent interest to theoretical statistics. Traditional estimation methods (example: kernel based) fail right at the outset; we bring statistical methods of local likelihood to design a novel estimator of score functions, that provably adapts to the local geometry of the unknown density. 
    more » « less
  2. Estimating the effect of treatments from natural experiments, where treatments are pre-assigned, is an important and well-studied problem. We introduce a novel natural experiment dataset obtained from an early childhood literacy nonprofit. Surprisingly, applying over 20 established estimators to the dataset produces inconsistent results in evaluating the nonprofits efficacy. To address this, we create a benchmark to evaluate estimator accuracy using synthetic outcomes, whose design was guided by domain experts. The benchmark extensively explores performance as real world conditions like sample size, treatment correlation, and propensity score accuracy vary. Based on our benchmark, we observe that the class of doubly robust treatment effect estimators, which are based on simple and intuitive regression adjustment, generally outperform other more complicated estimators by orders of magnitude. To better support our theoretical understanding of doubly robust estimators, we derive a closed form expression for the variance of any such estimator that uses dataset splitting to obtain an unbiased estimate. This expression motivates the design of a new doubly robust estimator that uses a novel loss function when fitting functions for regression adjustment. We release the dataset and benchmark in a Python package; the package is built in a modular way to facilitate new datasets and estimators. https://github.com/rtealwitter/naturalexperiments. 
    more » « less
  3. We study the problem of learning hierarchical polynomials over the standard Gaussian distribution with three-layer neural networks. We specifically consider target functions of the form where is a degree polynomial and is a degree polynomial. This function class generalizes the single-index model, which corresponds to , and is a natural class of functions possessing an underlying hierarchical structure. Our main result shows that for a large subclass of degree polynomials , a three-layer neural network trained via layerwise gradient descent on the square loss learns the target up to vanishing test error in samples and polynomial time. This is a strict improvement over kernel methods, which require samples, as well as existing guarantees for two-layer networks, which require the target function to be low-rank. Our result also generalizes prior works on three-layer neural networks, which were restricted to the case of being a quadratic. When is indeed a quadratic, we achieve the information-theoretically optimal sample complexity , which is an improvement over prior work (Nichani et al., 2023) requiring a sample size of . Our proof proceeds by showing that during the initial stage of training the network performs feature learning to recover the feature with samples. This work demonstrates the ability of three-layer neural networks to learn complex features and as a result, learn a broad class of hierarchical functions. 
    more » « less
  4. Energy-based models (EBMs) assign an unnormalized log probability to data samples. This functionality has a variety of applications, such as sample synthesis, data denoising, sample restoration, outlier detection, Bayesian reasoning and many more. But, the training of EBMs using standard maximum likelihood is extremely slow because it requires sampling from the model distribution. Score matching potentially alleviates this problem. In particular, denoising-score matching has been successfully used to train EBMs. Using noisy data samples with one fixed noise level, these models learn fast and yield good results in data denoising. However, demonstrations of such models in the high-quality sample synthesis of high-dimensional data were lacking. Recently, a paper showed that a generative model trained by denoising-score matching accomplishes excellent sample synthesis when trained with data samples corrupted with multiple levels of noise. Here we provide an analysis and empirical evidence showing that training with multiple noise levels is necessary when the data dimension is high. Leveraging this insight, we propose a novel EBM trained with multiscale denoising-score matching. Our model exhibits a data-generation performance comparable to state-of-the-art techniques such as GANs and sets a new baseline for EBMs. The proposed model also provides density information and performs well on an image-inpainting task. 
    more » « less
  5. Learning operators between infinitely dimensional spaces is an important learning task arising in machine learning, imaging science, mathematical modeling and simulations, etc. This paper studies the nonparametric estimation of Lipschitz operators using deep neural networks. Non-asymptotic upper bounds are derived for the generalization error of the empirical risk minimizer over a properly chosen network class. Under the assumption that the target operator exhibits a low dimensional structure, our error bounds decay as the training sample size increases, with an attractive fast rate depending on the intrinsic dimension in our estimation. Our assumptions cover most scenarios in real applications and our results give rise to fast rates by exploiting low dimensional structures of data in operator estimation. We also investigate the influence of network structures (e.g., network width, depth, and sparsity) on the generalization error of the neural network estimator and propose a general suggestion on the choice of network structures to maximize the learning efficiency quantitatively. 
    more » « less