Abstract Planets form in dusty, gas-rich disks around young stars, while at the same time, the planet formation process alters the physical and chemical structure of the disk itself. Embedded planets will locally heat the disk and sublimate volatile-rich ices, or in extreme cases, result in shocks that sputter heavy atoms such as Si from dust grains. This should cause chemical asymmetries detectable in molecular gas observations. Using high-angular-resolution ALMA archival data of the HD 169142 disk, we identify compact SOJ= 88− 77and SiSJ= 19 − 18 emission coincident with the position of a ∼ 2MJupplanet seen as a localized, Keplerian NIR feature within a gas-depleted, annular dust gap at ≈38 au. The SiS emission is located along an azimuthal arc and has a morphology similar to that of a known12CO kinematic excess. This is the first tentative detection of SiS emission in a protoplanetary disk and suggests that the planet is driving sufficiently strong shocks to produce gas-phase SiS. We also report the discovery of compact12CO and13COJ= 3 − 2 emission coincident with the planet location. Taken together, a planet-driven outflow provides the best explanation for the properties of the observed chemical asymmetries. We also resolve a bright, azimuthally asymmetric SO ring at ≈24 au. While most of this SO emission originates from ice sublimation, its asymmetric distribution implies azimuthal temperature variations driven by a misaligned inner disk or planet–disk interactions. Overall, the HD 169142 disk shows several distinct chemical signatures related to giant planet formation and presents a powerful template for future searches of planet-related chemical asymmetries in protoplanetary disks.
more »
« less
This content will become publicly available on May 19, 2026
The Dynamic Inner Disk of a Planet-forming Star
Abstract Planets are a natural byproduct of the stellar formation process, resulting from local aggregations of material within the disks surrounding young stars. Whereas signatures of gas-giant planets at large orbital separations have been observed and successfully modeled within protoplanetary disks, the formation pathways of planets within their host star’s future habitable zones remain poorly understood. Analyzing multiple nights of observations conducted over a short, 2 month span with the MIRC-X and PIONIER instruments at the CHARA Array and VLTI, respectively, we uncover a highly active environment at the inner-edge of the planet formation region in the disk of HD 163296. In particular, we localize and track the motion of a disk feature near the dust-sublimation radius with a pattern speed of less than half the local Keplerian velocity, providing a potential glimpse at the planet formation process in action within the inner astronomical unit. We emphasize that this result is at the edge of what is currently possible with available optical interferometric techniques and behooves confirmation with a temporally dense followup observing campaign.
more »
« less
- PAR ID:
- 10613377
- Publisher / Repository:
- IOP / American Astronomical Society
- Date Published:
- Journal Name:
- The Astronomical Journal
- Volume:
- 169
- Issue:
- 6
- ISSN:
- 0004-6256
- Page Range / eLocation ID:
- 318
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present high-resolution millimeter continuum ALMA observations of the disks around the T Tauri stars LkCa 15 and 2MASS J16100501-2132318 (hereafter, J1610). These transition disks host dust-depleted inner regions, which have possibly been carved by massive planets, and they are of prime interest to the study of the imprints of planet-disk interactions. While at moderate angular resolution, they appear as a broad ring surrounding a cavity, the continuum emission resolves into multiple rings at a resolution of ~60 × 40 mas (~7.5 au for LkCa 15, ~6 au for J1610) and ~7 μ Jy beam −1 rms at 1.3 mm. In addition to a broad extended component, LkCa 15 and J1610 host three and two narrow rings, respectively, with two bright rings in LkCa 15 being radially resolved. LkCa 15 possibly hosts another faint ring close to the outer edge of the mm emission. The rings look marginally optically thick, with peak optical depths of ~0.5 (neglecting scattering), in agreement with high angular resolution observations of full disks. We performed hydrodynamical simulations with an embedded, sub-Jovian-mass planet and show that the observed multi-ringed substructure can be qualitatively explained as the outcome of the planet-disk interaction. We note, however, that the choice of the disk cooling timescale alone can significantly impact the resulting gas and dust distributions around the planet, leading to different numbers of rings and gaps and different spacings between them. We propose that the massive outer disk regions of transition disks are favorable places for planetesimals, and possibly second-generation planet formation of objects with a lower mass than the planets carving the inner cavity (typically few M Jup ), and that the annular substructures observed in LkCa 15 and J1610 may be indicative of planetary core formation within dust-rich pressure traps. Current observations are compatible with other mechanisms contributing to the origin of the observed substructures, in particular with regard to narrow rings generated (or facilitated) at the edge of the CO and N 2 snowlines.more » « less
-
Abstract Giant planets have been discovered at large separations from the central star. Moreover, a striking number of young circumstellar disks have gas and/or dust gaps at large orbital separations, potentially driven by embedded planetary objects. To form massive planets at large orbital separations through core accretion within the disk lifetime, however, an early solid body to seed pebble and gas accretion is desirable. Young protoplanetary disks are likely self-gravitating, and these gravitoturbulent disks may efficiently concentrate solid material at the midplane driven by spiral waves. We run 3D local hydrodynamical simulations of gravitoturbulent disks with Lagrangian dust particles to determine whether particle and gas self-gravity can lead to the formation of dense solid bodies, seeding later planet formation. When self-gravity between dust particles is included, solids of size St = 0.1–1 concentrate within the gravitoturbulent spiral features and collapse under their own self-gravity into dense clumps up to several M ⊕ in mass at wide orbits. Simulations with dust that drift most efficiently, St = 1, form the most massive clouds of particles, while simulations with smaller dust particles, St = 0.1, have clumps with masses an order of magnitude lower. When the effect of dust backreaction onto the gas is included, dust clumps become smaller by a factor of a few but more numerous. The existence of large solid bodies at an early stage of the disk can accelerate the planet formation process, particularly at wide orbital separations, and potentially explain planets distant from the central stars and young protoplanetary disks with substructures.more » « less
-
Protoplanetary disk evolution exhibits trends with stellar mass, but also diversity of structure, and lifetime, with implications for planet formation and demographics. We show how varied outcomes can result from evolving structures in the inner disk that attenuate stellar soft X-rays that otherwise drive photoevaporation in the outer disk. The magnetic truncation of the disk around a rapidly rotating T Tauri star is initially exterior to the corotation radius and “propeller” accretion is accompanied by an inner magnetized wind, shielding the disk from X-rays. Because rotation varies little due to angular momentum exchange with the disk, stellar contraction causes the truncation radius to migrate inside the corotation radius, the inner wind to disappear, and photoevaporation to erode a gap in the disk, accelerating its dissipation. This X-ray attenuation scenario explains the trend of the longer lifetime, reduced structure, and compact size of disks around lower-mass stars. It also explains an observed lower bound and scatter in the distribution of disk accretion rates. Disks that experience early photoevaporation and form gaps can efficiently trap solids at a pressure bump at 1–10 au, triggering giant planet formation, while those with later-forming gaps or indeed no gaps form multiple smaller planets on close-in orbits, a pattern that is consistent with observed exoplanet demographics.more » « less
-
Abstract The vertical settling of dust grains in a circumstellar disk, characterized by their scale height, is a pivotal process in the formation of planets. This study offers in-depth analysis and modeling of the radial scale height profile of dust grains in the HL Tau system, leveraging high-resolution polarization observations. We resolve the inner disk’s polarization, revealing a significant nearside–farside asymmetry, with the nearside being markedly brighter than the farside in polarized intensity. This asymmetry is attributed to a geometrically thick inner dust disk, suggesting a large aspect ratio ofH/R≥ 0.15, whereHis the dust scale height andRis the radius. The first ring at 20 au exhibits an azimuthal contrast, with polarization enhanced along the minor axis, indicating a moderately thick dust ring withH/R ≈ 0.1. The absence of the nearside–farside asymmetry at larger scales implies a thin dust layer, withH/R < 0.05. Taken together, these findings depict a disk with a turbulent inner region and a settled outer disk, requiring a variable turbulence model withαincreasing from 10−5at 100 au to 10−2.5at 20 au. This research sheds light on dust settling and turbulence levels within protoplanetary disks, providing valuable insights into the mechanisms of planet formation.more » « less
An official website of the United States government
