skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Algebraic weaves and braid varieties
abstract: In this manuscript we study braid varieties, a class of affine algebraic varieties associated to positive braids. Several geometric constructions are presented, including certain torus actions on braid varieties and holomorphic symplectic structures on their respective quotients. We also develop a diagrammatic calculus for correspondences between braid varieties and use these correspondences to obtain interesting decompositions of braid varieties and their quotients. It is shown that the maximal charts of these decompositions are exponential Darboux charts for the holomorphic symplectic structures, and we relate these charts to exact Lagrangian fillings of Legendrian links.  more » « less
Award ID(s):
2302305
PAR ID:
10613603
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Johns Hopkins University Press
Date Published:
Journal Name:
American Journal of Mathematics
Volume:
146
Issue:
6
ISSN:
1080-6377
Page Range / eLocation ID:
1469 to 1576
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Using totally symmetric sets, Chudnovsky–Kordek–Li–Partin gave a superexponential lower bound on the cardinality of non-abelian finite quotients of the braid group. In this paper, we develop new techniques using multiple totally symmetric sets to count elements in non-abelian finite quotients of the braid group. Using these techniques, we improve the lower bound found by Chudnovsky et al. We exhibit totally symmetric sets in the virtual and welded braid groups and use our new techniques to find superexponential bounds for the finite quotients of the virtual and welded braid groups. 
    more » « less
  2. We show the existence of cluster A \mathcal {A} -structures and cluster Poisson structures on any braid variety, for any simple Lie group. The construction is achieved via weave calculus and a tropicalization of Lusztig’s coordinates. Several explicit seeds are provided and the quiver and cluster variables are readily computable. We prove that these upper cluster algebras equal their cluster algebras, show local acyclicity, and explicitly determine their DT-transformations as the twist automorphisms of braid varieties. The main result also resolves the conjecture of B. Leclerc [Adv. Math. 300 (2016), pp. 190–228] on the existence of cluster algebra structures on the coordinate rings of open Richardson varieties. 
    more » « less
  3. We prove a correspondence between Donaldson–Thomas invariants of quivers with potential having trivial attractor invariants and genus zero punctured Gromov–Witten invariants of holomorphic symplectic cluster varieties. The proof relies on the comparison of the stability scattering diagram, describing the wall-crossing behavior of Donaldson–Thomas invariants, with a scattering diagram capturing punctured Gromov–Witten invariants via tropical geometry. 
    more » « less
  4. We extend results of Looijenga--Lunts and Verbitsky and show that the total Lie algebra $$\mathfrak g$$ for the intersection cohomology of a primitive symplectic variety $$X$$ with isolated singularities is isomorphic to $$\mathfrak g \cong \mathfrak{so}\left(\left(IH^2(X, \mathbb Q), Q_X\right)\oplus \mathfrak h\right),$$ where $$Q_X$$ is the intersection Beauville--Bogomolov--Fujiki form and $$\mathfrak h$$ is a hyperbolic plane. This gives a new, algebraic proof for irreducible holomorphic symplectic manifolds which does not rely on the hyperk\"ahler metric. Along the way, we study the structure of $$IH^*(X, \mathbb Q)$$ as a $$\mathfrak{g}$$-representation -- with particular emphasis on the Verbitsky component, multidimensional Kuga--Satake constructions, and Mumford--Tate algebras -- and give some immediate applications concerning the $P = W$ conjecture for primitive symplectic varieties. Comment: 41 pages; Final journal version; new subsection on LLV algebra for symplectic orbifolds 
    more » « less
  5. The embedded contact homology (ECH) capacities are a sequence of numerical invariants of symplectic four-manifolds that give (sometimes sharp) obstructions to symplectic embeddings. These capacities are defined using embedded contact homology, and establishing their basic properties currently requires Seiberg–Witten theory. In this paper we define a sequence of symplectic capacities in four dimensions using only basic notions of holomorphic curves. The capacities satisfy the same basic properties as ECH capacities and agree with the ECH capacities for the main examples for which the latter have been computed, namely convex and concave toric domains. The capacities are also useful for obstructing symplectic embeddings into closed symplectic four-manifolds. This work is inspired by a recent preprint of McDuff and Siegel [D. McDuff, K. Siegel, arXiv [Preprint] (2021)], giving a similar elementary alternative to symplectic capacities from rational symplectic field theory (SFT). 
    more » « less