skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A systematic review and evaluation of synthetic simulated data generation strategies for deep learning applications in construction
The integration of deep learning (DL) into construction applications holds substantial potential for enhancing construction automation and intelligence. However, successful implementation of DL necessitates the acquisition of substantial data for training. The acquisition process can be error-prone, time-consuming, and impractical. For this reason, synthetic simulated data (SSD) has emerged as a promising alternative. While various strategies have been developed to generate such data, a systematic review and evaluation are lacking to aid researchers and professionals in selecting appropriate strategies for their applications. To fill this gap, this paper conducts a comprehensive literature review related to SSD generation and applications, and develops a guideline for strategy selection. Two hundred and eight articles are identified from the academic database Web of Science by using PRISMA. After thoroughly analyzing the literature, seven SSD generation strategies are identified and evaluated across six metrics. Based on the performance of each strategy, a guideline is synthesized as a decision tree. Users only need to follow the steps and answer the questions in the decision tree, and then they will get the recommended SSD generation strategy. We demonstrate the guideline’s effectiveness by comparing its recommendations with the strategies chosen by researchers in existing DL construction applications and achieve a matching rate of 82%.  more » « less
Award ID(s):
2152163
PAR ID:
10613649
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Advanced Engineering Informatics
Volume:
62
Issue:
PB
ISSN:
1474-0346
Page Range / eLocation ID:
102699
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    High-fidelity characterization and effective monitoring of spatial and spatiotemporal processes are crucial for high-performance quality control of many manufacturing processes and systems in the era of smart manufacturing. Although the recent development in measurement technologies has made it possible to acquire high-resolution three-dimensional (3D) surface measurement data, it is generally expensive and time-consuming to use such technologies in real-world production settings. Data-driven approaches that stem from statistics and machine learning can potentially enable intelligent, cost-effective surface measurement and thus allow manufacturers to use high-resolution surface data for better decision-making without introducing substantial production cost induced by data acquisition. Among these methods, spatial and spatiotemporal interpolation techniques can draw inferences about unmeasured locations on a surface using the measurement of other locations, thus decreasing the measurement cost and time. However, interpolation methods are very sensitive to the availability of measurement data, and their performances largely depend on the measurement scheme or the sampling design, i.e., how to allocate measurement efforts. As such, sampling design is considered to be another important field that enables intelligent surface measurement. This paper reviews and summarizes the state-of-the-art research in interpolation and sampling design for surface measurement in varied manufacturing applications. Research gaps and future research directions are also identified and can serve as a fundamental guideline to industrial practitioners and researchers for future studies in these areas. 
    more » « less
  2. Tang, Pingbo; Grau, David; Asmar, Mounir E. (Ed.)
    Effective construction engineering and management education requires hands-on experiences that have not traditionally been offered in classroom settings. Physical building competitions like Solar Decathlon are valuable for providing experiential learning opportunities that may support tacit and explicit knowledge development among students, but they are often not available to all students due to funding and resource limitations. Less resource intensive teaching strategies, such as project based learning, can mimic the benefit of physical experiences by providing context to learning content. This paper reviews project based learning literature to identify trends in reported learning gains from the adoption of this strategy. Additionally, emerging technologies offer the ability to create low cost, immersive multimedia environments that may be able to support the types of learning targeted by physical design and construction experiences. Literature on multimedia learning theory is explored to identify opportunities for multimedia applications to facilitate learnings derived by physical educational contexts, but with the use of increasingly affordable multimedia strategies. This paper resulted in identifying six learning gains that have a theoretical potential to be facilitated using augmented reality and virtual reality technologies. The theoretical potential was deduced based on prior research on teaching strategies that provide real-world context to learning content. The authors of this paper propose using the identified learning gains as targets to specifically design implementation studies to verify this potential. The learning gains identified in the results section can be targeted and measured in future research when empirically validating the use of immersive technologies for construction education. The contribution of this work is in synthesizing the learning gains that future researchers should target based on evidence from prior research in related learning contexts. 
    more » « less
  3. Effective construction engineering and management education requires hands-on experiences that have not traditionally been offered in classroom settings. Physical building competitions like Solar Decathlon are valuable for providing experiential learning opportunities that may support tacit and explicit knowledge development among students, but they are often not available to all students due to funding and resource limitations. Less resource intensive teaching strategies, such as project based learning, can mimic the benefit of physical experiences by providing context to learning content. This paper reviews project based learning literature to identify trends in reported learning gains from the adoption of this strategy. Additionally, emerging technologies offer the ability to create low cost, immersive multimedia environments that may be able to support the types of learning targeted by physical design and construction experiences. Literature on multimedia learning theory is explored to identify opportunities for multimedia applications to facilitate learnings derived by physical educational contexts, but with the use of increasingly affordable multimedia strategies. This paper resulted in identifying six learning gains that have a theoretical potential to be facilitated using augmented reality and virtual reality technologies. The theoretical potential was deduced based on prior research on teaching strategies that provide real-world context to learning content. The authors of this paper propose using the identified learning gains as targets to specifically design implementation studies to verify this potential. The learning gains identified in the results section can be targeted and measured in future research when empirically validating the use of immersive technologies for construction education. The contribution of this work is in synthesizing the learning gains that future researchers should target based on evidence from prior research in related learning contexts. 
    more » « less
  4. Abstract Biologists represent data in visual forms, such as graphs, to aid data analysis and communication. However, students struggle to construct effective graphs. Although some studies explore these difficulties, we lack a comprehensive framework of the knowledge and skills needed to construct graphs in biology. In the present article, we describe the development of the Graph Construction Competency Model for Biology (GCCM-Bio), a framework of the components and activities associated with graph construction. We identified four broad knowledge areas for graph construction in biology: data selection, data exploration, graph assembly, and graph reflection. Under each area, we identified activities undertaken when constructing graphs of biological data and refined the GCCM-Bio through focus groups with experts in biology and statistics education. We also ran a scoping literature review to verify that these activities were represented in the graphing literature. The GCCM-Bio could support instructors, curriculum developers, and researchers when designing instruction and assessment of biology graph construction. 
    more » « less
  5. null (Ed.)
    Carbohydrate based low molecular weight gelators have been an intense subject of study over the past decade. The self-assembling systems built from natural products have high significance as biocompatible materials and renewable resources. The versatile structures available from naturally existing monosaccharides have enriched the molecular libraries that can be used for the construction of gelators. The bottom-up strategy in designing low molecular weight gelators (LMWGs) for a variety of applications has been adopted by many researchers. Rational design, along with some serendipitous discoveries, has resulted in multiple classes of molecular gelators. This review covers the literature from 2017–2020 on monosaccharide based gelators, including common hexoses, pentoses, along with some disaccharides and their derivatives. The structure-based design and structure to gelation property relationships are reviewed first, followed by stimuli-responsive gelators. The last section focuses on the applications of the sugar based gelators, including their utilization in environmental remediation, ion sensing, catalysis, drug delivery and 3D-printing. We will also review the available LMWGs and their structure correlations to the desired properties for different applications. This review aims at elucidating the design principles and structural features that are pertinent to various applications and hope to provide certain guidelines for researchers that are working at the interface of chemistry, biochemistry, and materials science. 
    more » « less