Deep learning has emerged as a promising paradigm to give access to highly accurate predictions of molecular and material properties. A common short-coming shared by current approaches, however, is that neural networks only give point estimates of their predictions and do not come with predictive uncertainties associated with these estimates. Existing uncertainty quantification efforts have primarily leveraged the standard deviation of predictions across an ensemble of independently trained neural networks. This incurs a large computational overhead in both training and prediction, resulting in order-of-magnitude more expensive predictions. Here, we propose a method to estimate the predictive uncertainty based on a single neural network without the need for an ensemble. This allows us to obtain uncertainty estimates with virtually no additional computational overhead over standard training and inference. We demonstrate that the quality of the uncertainty estimates matches those obtained from deep ensembles. We further examine the uncertainty estimates of our methods and deep ensembles across the configuration space of our test system and compare the uncertainties to the potential energy surface. Finally, we study the efficacy of the method in an active learning setting and find the results to match an ensemble-based strategy at order-of-magnitude reduced computational cost.
more »
« less
Ajna: Generalized deep uncertainty for minimal perception on parsimonious robots
Robots are active agents that operate in dynamic scenarios with noisy sensors. Predictions based on these noisy sensor measurements often lead to errors and can be unreliable. To this end, roboticists have used fusion methods using multiple observations. Lately, neural networks have dominated the accuracy charts for perception-driven predictions for robotic decision-making and often lack uncertainty metrics associated with the predictions. Here, we present a mathematical formulation to obtain the heteroscedastic aleatoric uncertainty of any arbitrary distribution without prior knowledge about the data. The approach has no prior assumptions about the prediction labels and is agnostic to network architecture. Furthermore, our class of networks, Ajna, adds minimal computation and requires only a small change to the loss function while training neural networks to obtain uncertainty of predictions, enabling real-time operation even on resource-constrained robots. In addition, we study the informational cues present in the uncertainties of predicted values and their utility in the unification of common robotics problems. In particular, we present an approach to dodge dynamic obstacles, navigate through a cluttered scene, fly through unknown gaps, and segment an object pile, without computing depth but rather using the uncertainties of optical flow obtained from a monocular camera with onboard sensing and computation. We successfully evaluate and demonstrate the proposed Ajna network on four aforementioned common robotics and computer vision tasks and show comparable results to methods directly using depth. Our work demonstrates a generalized deep uncertainty method and demonstrates its utilization in robotics applications.
more »
« less
- Award ID(s):
- 2020624
- PAR ID:
- 10484646
- Publisher / Repository:
- American Association for the Advancement of Science
- Date Published:
- Journal Name:
- Science Robotics
- Volume:
- 8
- Issue:
- 81
- ISSN:
- 2470-9476
- Page Range / eLocation ID:
- eadd5139
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A simple method for adding uncertainty to neural network regression tasks in earth science via estimation of a general probability distribution is described. Specifically, we highlight the sinh-arcsinh-normal distributions as particularly well suited for neural network uncertainty estimation. The methodology supports estimation of heteroscedastic, asymmetric uncertainties by a simple modification of the network output and loss function. Method performance is demonstrated by predicting tropical cyclone intensity forecast uncertainty and by comparing two other common methods for neural network uncertainty quantification (i.e., Bayesian neural networks and Monte Carlo dropout). The simple approach described here is intuitive and applicable when no prior exists and one just wishes to parameterize the output and its uncertainty according to some previously defined family of distributions. The authors believe it will become a powerful, go-to method moving forward.more » « less
-
null (Ed.)This paper presents a novel framework for training convolutional neural networks (CNNs) to quantify the impact of gradual and abrupt uncertainties in the form of adversarial attacks. Uncertainty quantification is achieved by combining the CNN with a Gaussian process (GP) classifier algorithm. The variance of the GP quantifies the impact on the uncertainties and especially their effect on the object classification tasks. Learning from uncertainty provides the proposed CNN-GP framework with flexibility, reliability and robustness to adversarial attacks. The proposed approach includes training the network under noisy conditions. This is accomplished by comparing predictions with classification labels via the Kullback-Leibler divergence, Wasserstein distance and maximum correntropy. The network performance is tested on the classical MNIST, Fashion-MNIST, CIFAR10 and CIFAR 100 datasets. Further tests on robustness to both black-box and white-box attacks are also carried out for MNIST. The results show that the testing accuracy improves for networks that backpropogate uncertainty as compared to methods that do not quantify the impact of uncertainties. A comparison with a state-of-art Monte Carlo dropout method is also presented and the outperformance of the CNN-GP framework with respect to reliability and computational efficiency is demonstrated.more » « less
-
We study the properties of output distributions of noisy random circuits. We obtain upper and lower bounds on the expected distance of the output distribution from the “useless” uniform distribution. These bounds are tight with respect to the dependence on circuit depth. Our proof techniques also allow us to make statements about the presence or absence of anticoncentration for both noisy and noiseless circuits. We uncover a number of interesting consequences for hardness proofs of sampling schemes that aim to show a quantum computational advantage over classical computation. Specifically, we discuss recent barrier results for depth-agnostic and/or noise-agnostic proof techniques. We show that in certain depth regimes, noise-agnostic proof techniques might still work in order to prove an often-conjectured claim in the literature on quantum computational advantage, contrary to what has been thought prior to this work.more » « less
-
null (Ed.)In this paper, we address the problem of estimating dense depth from a sequence of images using deep neural networks. Specifically, we employ a dense-optical-flow network to compute correspondences and then triangulate the point cloud to obtain an initial depth map. Parts of the point cloud, however, may be less accurate than others due to lack of common observations or small parallax. To further increase the triangulation accuracy, we introduce a depth-refinement network (DRN) that optimizes the initial depth map based on the image’s contextual cues. In particular, the DRN contains an iterative refinement module (IRM) that improves the depth accuracy over iterations by refining the deep features. Lastly, the DRN also predicts the uncertainty in the refined depths, which is desirable in applications such as measurement selection for scene reconstruction. We show experimentally that our algorithm outperforms state-of-the-art approaches in terms of depth accuracy, and verify that our predicted uncertainty is highly correlated to the actual depth error.more » « less
An official website of the United States government

