skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 9, 2026

Title: TMModel: Modeling Texture Memory and Mobile GPU Performance to Accelerate DNN Computations
The demand for Deep Neural Network (DNN) execution (including both inference and training) on mobile system-ona-chip (SoCs) has surged, driven by factors like the need for real-time latency, privacy, and reducing vendors’ costs. Mainstream mobile GPUs (eg, Qualcomm Adreno GPUs) usually have a 2.5 D L1 texture cache that offers throughput superior to that of on-chip memory. However, to date, there is limited understanding of the performance features of such a 2.5 D cache, which limits the optimization potential. This paper introduces TMModel, a framework with three components: 1) a set of micro-benchmarks and a novel performance assessment methodology to characterize a non-well-documented architecture with 2D memory, 2) a complete analytical performance model configurable for different data access pattern (s), tiling size (s), and other GPU execution parameters for a given operator (and associated size and shape), and 3) a compilation framework incorporating this model and generating optimized code with low overhead. TMModel is validated both on a set of DNN kernels and for training complete models on mobile GPU.  more » « less
Award ID(s):
2333895
PAR ID:
10613664
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
ACM - Proceedings of ICS 2025
Date Published:
ISSN:
9798-4007
ISBN:
979-8-4007-1537-2
Format(s):
Medium: X
Location:
salt late city
Sponsoring Org:
National Science Foundation
More Like this
  1. The demand for Deep Neural Network (DNN) execution (including both inference and training) on mobile system-ona-chip (SoCs) has surged, driven by factors like the need for real-time latency, privacy, and reducing vendors’ costs. Mainstream mobile GPUs (eg, Qualcomm Adreno GPUs) usually have a 2.5 D L1 texture cache that offers throughput superior to that of on-chip memory. However, to date, there is limited understanding of the performance features of such a 2.5 D cache, which limits the optimization potential. This paper introduces TMModel, a framework with three components: 1) a set of micro-benchmarks and a novel performance assessment methodology to characterize a non-well-documented architecture with 2D memory, 2) a complete analytical performance model configurable for different data access pattern (s), tiling size (s), and other GPU execution parameters for a given operator (and associated size and shape), and 3) a compilation framework incorporating this model and generating optimized code with low overhead. TMModel is validated both on a set of DNN kernels and for training complete models on mobile GPU. 
    more » « less
  2. The demand for Deep Neural Network (DNN) execution (including both inference and training) on mobile system-on-a-chip (SoCs) has surged, driven by factors like the need for real-time latency, privacy, and reducing vendors’ costs. Mainstream mobile GPUs (e.g., Qualcomm Adreno GPUs) usually have a 2.5D L1 texture cache that offers throughput superior to that of on-chip memory. However, to date, there is limited understanding of the performance features of such a 2.5D cache, which limits the optimization potential. This paper introduces TMModel, a framework with three components: 1) a set of micro-benchmarks and a novel performance assessment methodology to characterize a non-well-documented architecture with 2D memory, 2) a complete analytical performance model configurable for different data access pattern(s), tiling size(s), and other GPU execution parameters for a given operator (and associated size and shape), and 3) a compilation framework incorporating this model and generating optimized code with low overhead. TMModel is validated both on a set of DNN kernels and for training complete models on a mobile GPU, and compared against both popular mobile DNN frameworks and another GPU performance model. Evaluation results demonstrate that TMModel outperforms all baselines, achieving 1.48 − 3.61× speedup on individual kernels and 1.83 − 66.1× speedup for end-to-end on-device training with only 0.25% − 18.5% the tuning cost of the baselines. 
    more » « less
  3. Graphics Processing Units (GPUs) exploit large amounts of thread-level parallelism to provide high instruction throughput and to efficiently hide long-latency stalls. The resulting high throughput, along with continued programmability improvements, have made GPUs an essential computational resource in many domains. Applications from different domains can have vastly different compute and memory demands on the GPU. In a large-scale computing environment, to efficiently accommodate such wide-ranging demands without leaving GPU resources underutilized, multiple applications can share a single GPU, akin to how multiple applications execute concurrently on a CPU. Multi-application concurrency requires several support mechanisms in both hardware and software. One such key mechanism is virtual memory, which manages and protects the address space of each application. However, modern GPUs lack the extensive support for multi-application concurrency available in CPUs, and as a result suffer from high performance overheads when shared by multiple applications, as we demonstrate. We perform a detailed analysis of which multi-application concurrency support limitations hurt GPU performance the most. We find that the poor performance is largely a result of the virtual memory mechanisms employed in modern GPUs. In particular, poor address translation performance is a key obstacle to efficient GPU sharing. State-of-the-art address translation mechanisms, which were designed for single-application execution, experience significant inter-application interference when multiple applications spatially share the GPU. This contention leads to frequent misses in the shared translation lookaside buffer (TLB), where a single miss can induce long-latency stalls for hundreds of threads. As a result, the GPU often cannot schedule enough threads to successfully hide the stalls, which diminishes system throughput and becomes a first-order performance concern. Based on our analysis, we propose MASK, a new GPU framework that provides low-overhead virtual memory support for the concurrent execution of multiple applications. MASK consists of three novel address-translation-aware cache and memory management mechanisms that work together to largely reduce the overhead of address translation: (1) a token-based technique to reduce TLB contention, (2) a bypassing mechanism to improve the effectiveness of cached address translations, and (3) an application-aware memory scheduling scheme to reduce the interference between address translation and data requests. Our evaluations show that MASK restores much of the throughput lost to TLB contention. Relative to a state-of-the-art GPU TLB, MASK improves system throughput by 57.8%, improves IPC throughput by 43.4%, and reduces application-level unfairness by 22.4%. MASK's system throughput is within 23.2% of an ideal GPU system with no address translation overhead. 
    more » « less
  4. null (Ed.)
    Deep neural networks (DNNs) are increasingly used for real-time inference, requiring low latency, but require significant computational power as they continue to increase in complexity. Edge clouds promise to offer lower latency due to their proximity to end-users and having powerful accelerators like GPUs to provide the computation power needed for DNNs. But it is also important to ensure that the edge-cloud resources are utilized well. For this, multiplexing several DNN models through spatial sharing of the GPU can substantially improve edge-cloud resource usage. Typical GPU runtime environments have significant interactions with the CPU, to transfer data to the GPU, for CPU-GPU synchronization on inference task completions, etc. These result in overheads. We present a DNN inference framework with a set of software primitives that reduce the overhead for DNN inference, increase GPU utilization and improve performance, with lower latency and higher throughput. Our first primitive uses the GPU DMA effectively, reducing the CPU cycles spent to transfer the data to the GPU. A second primitive uses asynchronous ‘events’ for faster task completion notification. GPU runtimes typically preclude fine-grained user control on GPU resources, causing long GPU downtimes when adjusting resources. Our third primitive supports overlapping of model-loading and execution, thus allowing GPU resource re-allocation with very little GPU idle time. Our other primitives increase inference throughput by improving scheduling and processing more requests. Overall, our primitives decrease inference latency by more than 35% and increase DNN throughput by 2-3×. 
    more » « less
  5. Deep neural networks (DNNs) are increasingly popular owing to their ability to solve complex problems such as image recognition, autonomous driving, and natural language processing. Their growing complexity coupled with the use of larger volumes of training data (to achieve acceptable accuracy) has warranted the use of GPUs and other accelerators. Such accelerators are typically expensive, with users having to pay a high upfront cost to acquire them. For infrequent use, users can, instead, leverage the public cloud to mitigate the high acquisition cost. However, with the wide diversity of hardware instances (particularly GPU instances) available in public cloud, it becomes challenging for a user to make an appropriate choice from a cost/performance standpoint. In this work, we try to address this problem by (i) introducing a comprehensive distributed deep learning (DDL) profiler Stash, which determines the various execution stalls that DDL suffers from, and (ii) using Stash to extensively characterize various public cloud GPU instances by running popular DNN models on them. Specifically, it estimates two types of communication stalls, namely, interconnect and network stalls, that play a dominant role in DDL execution time. Stash is implemented on top of prior work, DS-analyzer, that computes only the CPU and disk stalls. Using our detailed stall characterization, we list the advantages and shortcomings of public cloud GPU instances for users to help them make an informed decision(s). Our characterization results indicate that the more expensive GPU instances may not be the most performant for all DNN models and that AWS can sometimes sub-optimally allocate hardware interconnect resources. Specifically, the intra-machine interconnect can introduce communication overheads of up to 90% of DNN training time and the network-connected instances can suffer from up to 5× slowdown compared to training on a single instance. Furthermore, (iii) we also model the impact of DNN macroscopic features such as the number of layers and the number of gradients on communication stalls, and finally, (iv) we briefly discuss a cost comparison with existing work. 
    more » « less