skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 9, 2026

Title: Sampling and Integration of Logconcave Functions by Algorithmic Diffusion
We study the complexity of sampling, rounding, and integrating arbitrary logconcave functions given an evaluation oracle. Our new approach provides the first complexity improvements in nearly two decades for general logconcave functions for all three problems, and matches the best-known complexities for the special case of uniform distributions on convex bodies. For the sampling problem, our output guarantees are significantly stronger than previously known, and lead to a streamlined analysis of statistical estimation based on dependent random samples.  more » « less
Award ID(s):
2106444
PAR ID:
10613755
Author(s) / Creator(s):
;
Publisher / Repository:
STOC 2025
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We refine and generalize what is known about coresets for classification problems via the sensitivity sampling framework. Such coresets seek the smallest possible subsets of input data, so one can optimize a loss function on the coreset and ensure approximation guarantees with respect to the original data. Our analysis provides the first no dimensional coresets, so the size does not depend on the dimension. Moreover, our results are general, apply for distributional input and can use iid samples, so provide sample complexity bounds, and work for a variety of loss functions. A key tool we develop is a Radamacher complexity version of the main sensitivity sampling approach, which can be of independent interest. 
    more » « less
  2. We address the problem of active logistic regression in the realizable setting. It is well known that active learning can require exponentially fewer label queries compared to passive learning, in some cases using $$\log \frac{1}{\eps}$$ rather than $$\poly(1/\eps)$$ labels to get error $$\eps$$ larger than the optimum. We present the first algorithm that is polynomially competitive with the optimal algorithm on every input instance, up to factors polylogarithmic in the error and domain size. In particular, if any algorithm achieves label complexity polylogarithmic in $$\eps$$, so does ours. Our algorithm is based on efficient sampling and can be extended to learn more general class of functions. We further support our theoretical results with experiments demonstrating performance gains for logistic regression compared to existing active learning algorithms. 
    more » « less
  3. We consider message-efficient continuous random sampling from a distributed stream, where the probability of inclusion of an item in the sample is proportional to a weight associated with the item. The unweighted version, where all weights are equal, is well studied, and admits tight upper and lower bounds on message complexity. For weighted sampling with replacement, there is a simple reduction to unweighted sampling with replacement. However, in many applications the stream may have only a few heavy items which may dominate a random sample when chosen with replacement. Weighted sampling without replacement (weighted SWOR) eludes this issue, since such heavy items can be sampled at most once. In this work, we present the first message-optimal algorithm for weighted SWOR from a distributed stream. Our algorithm also has optimal space and time complexity. As an application of our algorithm for weighted SWOR, we derive the first distributed streaming algorithms for tracking heavy hitters with residual error. Here the goal is to identify stream items that contribute significantly to the residual stream, once the heaviest items are removed. Residual heavy hitters generalize the notion of $$\ell_1$$ heavy hitters and are important in streams that have a skewed distribution of weights. In addition to the upper bound, we also provide a lower bound on the message complexity that is nearly tight up to a $$łog(1/\eps)$$ factor. Finally, we use our weighted sampling algorithm to improve the message complexity of distributed $$L_1$$ tracking, also known as count tracking, which is a widely studied problem in distributed streaming. We also derive a tight message lower bound, which closes the message complexity of this fundamental problem. 
    more » « less
  4. Thompson sampling (TS) is one of the most popular exploration techniques in reinforcement learning (RL). However, most TS algorithms with theoretical guarantees are difficult to implement and not generalizable to Deep RL. While the emerging approximate sampling-based exploration schemes are promising, most existing algorithms are specific to linear Markov Decision Processes (MDP) with suboptimal regret bounds, or only use the most basic samplers such as Langevin Monte Carlo. In this work, we propose an algorithmic framework that incorporates different approximate sampling methods with the recently proposed Feel-Good Thompson Sampling (FGTS) approach \citep{zhang2022feel,dann2021provably}, which was previously known to be computationally intractable in general. When applied to linear MDPs, our regret analysis yields the best known dependency of regret on dimensionality, surpassing existing randomized algorithms. Additionally, we provide explicit sampling complexity for each employed sampler. Empirically, we show that in tasks where deep exploration is necessary, our proposed algorithms that combine FGTS and approximate sampling perform significantly better compared to other strong baselines. On several challenging games from the Atari 57 suite, our algorithms achieve performance that is either better than or on par with other strong baselines from the deep RL literature. 
    more » « less
  5. Safe control designs for robotic systems remain challenging because of the difficulties of explicitly solving optimal control with nonlinear dynamics perturbed by stochastic noise. However, recent technological advances in computing devices enable online optimization or sampling-based methods to solve control problems. For example, Control Barrier Functions (CBFs) have been proposed to numerically solve convex optimization problems that ensure the control input to stay in the safe set. Model Predictive Path Integral (MPPI) control uses forward sampling of stochastic differential equations to solve optimal control problems online. Both control algorithms are widely used for nonlinear systems because they avoid calculating the derivatives of the nonlinear dynamic functions. In this paper, we use Stochastic Control Barrier Functions (SCBFs) constraints to limit sample regions in the samplingbased algorithm, ensuring safety in a probabilistic sense and improving sample efficiency with a stochastic differential equation. We also show that our algorithm needs fewer samples than the original MPPI algorithm does by providing a sampling complexity analysis. 
    more » « less