skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 8, 2026

Title: On two‐generator subgroups of mapping torus groups
Abstract We prove that if is the mapping torus group of an injective endomorphism of a free group (of possibly infinite rank), then every two‐generator subgroup of is either free or a (finitary) sub‐mapping torus. As an application we show that if is a fully irreducible atoroidal automorphism, then every two‐generator subgroup of is either free or has finite index in .  more » « less
Award ID(s):
1905641
PAR ID:
10613855
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Oxford University Press (OUP)
Date Published:
Journal Name:
Journal of the London Mathematical Society
Volume:
112
Issue:
1
ISSN:
0024-6107
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A group is called free-by-free if it is the semi-direct product of two finitely generated free groups. A group is coherent if any finitely generated subgroup is finitely presented, and incoherent otherwise. In this paper, the authors provide evidence towards the conjecture (due independently to the authors and Dani Wise) that every free-by-free group is incoherent. To do this, they give a homological condition which lets them conclude that the free-by-free group has a finite index subgroup which surjects onto ℤ with finitely generated kernel; standard arguments imply that this kernel cannot be finitely presented. As an important special case, they show that if the free-by-free group is hyperbolic and virtually special, then it is incoherent. 
    more » « less
  2. Abstract We prove that if two topologically free and entropy regular actions of countable sofic groups on compact metrizable spaces are continuously orbit equivalent, and each group either (i) contains a w-normal amenable subgroup which is neither locally finite nor virtually cyclic, or (ii) is a non-locally-finite product of two infinite groups, then the actions have the same sofic topological entropy. This fact is then used to show that if two free uniquely ergodic and entropy regular probability-measure-preserving actions of such groups are boundedly orbit equivalent then the actions have the same sofic measure entropy. Our arguments are based on a relativization of property SC to sofic approximations and yield more general entropy inequalities. 
    more » « less
  3. Abstract Every topological group G has, up to isomorphism, a unique minimal G -flow that maps onto every minimal G -flow, the universal minimal flow $M(G).$ We show that if G has a compact normal subgroup K that acts freely on $M(G)$ and there exists a uniformly continuous cross-section from $G/K$ to $G,$ then the phase space of $M(G)$ is homeomorphic to the product of the phase space of $M(G/K)$ with K . Moreover, if either the left and right uniformities on G coincide or G is isomorphic to a semidirect product $$G/K\ltimes K$$ , we also recover the action, in the latter case extending a result of Kechris and Sokić. As an application, we show that the phase space of $M(G)$ for any totally disconnected locally compact Polish group G with a normal open compact subgroup is homeomorphic to a finite set, the Cantor set $$2^{\mathbb {N}}$$ , $$M(\mathbb {Z})$$ , or $$M(\mathbb {Z})\times 2^{\mathbb {N}}.$$ 
    more » « less
  4. Building on the work of Mann and Rafi, we introduce an expanded definition of a telescoping2-manifold and proceed to study the homeomorphism group of a telescoping2-manifold. Our main result shows that it is strongly distorted. We then give a simple description of its commutator subgroup, which is index one, two, or four depending on the topology of the manifold. Moreover, we show its commutator subgroup is uniformly perfect with commutator width at most two, and we give a family of uniform normal generators for its commutator subgroup. As a consequence of the latter result, we show that for an (orientable) telescoping2-manifold, every (orientation-preserving) homeomorphism can be expressed as a product of at most 17 conjugate involutions. Finally, we provide analogous statements for mapping class groups. 
    more » « less
  5. We construct the first examples of normal subgroups of mapping class groups that are isomorphic to non-free right-angled Artin groups. Our construction also gives normal, non-free right-angled Artin subgroups of other groups, such as braid groups and pure braid groups, as well as many subgroups of the mapping class group, such as the Torelli subgroup. Our work recovers and generalizes the seminal result of Dahmani–Guirardel–Osin, which gives free, purely pseudo-Anosov normal subgroups of mapping class groups. We give two applications of our methods: (1) we produce an explicit proper normal subgroup of the mapping class group that is not contained in any level $$m$$ congruence subgroup and (2) we produce an explicit example of a pseudo-Anosov mapping class with the property that all of its even powers have free normal closure and its odd powers normally generate the entire mapping class group. The technical theorem at the heart of our work is a new version of the windmill apparatus of Dahmani–Guirardel–Osin, which is tailored to the setting of group actions on the projection complexes of Bestvina–Bromberg–Fujiwara. 
    more » « less