skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: Bayesian inference by visuomotor neurons in the prefrontal cortex
Perceptual judgments of the environment emerge from the concerted activity of neural populations in decision-making areas downstream of the sensory cortex. When the sensory input is ambiguous, perceptual judgments can be biased by prior expectations shaped by environmental regularities. These effects are examples of Bayesian inference, a reasoning method in which prior knowledge is leveraged to optimize uncertain decisions. However, it is not known how decision-making circuits combine sensory signals and prior expectations to form a perceptual decision. Here, we study neural population activity in the prefrontal cortex of macaque monkeys trained to report perceptual judgments of ambiguous visual stimuli under two different stimulus distributions. We isolate the component of the neural population response that represents the formation of the perceptual decision (the decision variable, DV), and find that its dynamical evolution reflects the integration of sensory signals and prior expectations. Prior expectations impact the DV’s trajectory both before and during stimulus presentation such that DV trajectories with a smaller dynamic range result in more biased and less sensitive perceptual decisions. We show that these results resemble a specific variant of Bayesian inference known as approximate hierarchical inference. Our findings expand our understanding of the mechanisms by which prefrontal circuits can execute Bayesian inference.  more » « less
Award ID(s):
2146369
PAR ID:
10613904
Author(s) / Creator(s):
; ;
Publisher / Repository:
National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
122
Issue:
13
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract During visually guided behavior, the prefrontal cortex plays a pivotal role in mapping sensory inputs onto appropriate motor plans. When the sensory input is ambiguous, this involves deliberation. It is not known whether the deliberation is implemented as a competition between possible stimulus interpretations or between possible motor plans. Here we study neural population activity in the prefrontal cortex of macaque monkeys trained to flexibly report perceptual judgments of ambiguous visual stimuli. We find that the population activity initially represents the formation of a perceptual choice before transitioning into the representation of the motor plan. Stimulus strength and prior expectations both bear on the formation of the perceptual choice, but not on the formation of the action plan. These results suggest that prefrontal circuits involved in action selection are also used for the deliberation of abstract propositions divorced from a specific motor plan, thus providing a crucial mechanism for abstract reasoning. 
    more » « less
  2. Perception is fallible. Humans know this, and so do some nonhuman animals like macaque monkeys. When monkeys report more confidence in a perceptual decision, that decision is more likely to be correct. It is not known how neural circuits in the primate brain assess the quality of perceptual decisions. Here, we test two hypotheses. First, that decision confidence is related to the structure of population activity in the sensory cortex. And second, that this relation differs from the one between sensory activity and decision content. We trained macaque monkeys to judge the orientation of ambiguous stimuli and additionally report their confidence in these judgments. We recorded population activity in the primary visual cortex and used decoders to expose the relationship between this activity and the choice-confidence reports. Our analysis validated both hypotheses and suggests that perceptual decisions arise from a neural computation downstream of visual cortex that estimates the most likely interpretation of a sensory response, while decision confidence instead reflects a computation that evaluates whether this sensory response will produce a reliable decision. Our work establishes a direct link between neural population activity in the sensory cortex and the metacognitive ability to introspect about the quality of perceptual decisions. 
    more » « less
  3. Prior expectations can bias how we perceive pain. Using a drift diffusion model, we recently showed that this influence is primarily based on changes in perceptual decision-making (indexed as shift in starting point). Only during unexpected application of high-intensity noxious stimuli, altered information processing (indexed as increase in drift rate) explained the expectancy effect on pain processing. Here, we employed functional magnetic resonance imaging to investigate the neural basis of both these processes in healthy volunteers. On each trial, visual cues induced the expectation of high- or low-intensity noxious stimulation or signaled equal probability for both intensities. Participants categorized a subsequently applied electrical stimulus as either low- or high-intensity pain. A shift in starting point towards high pain correlated negatively with right dorsolateral prefrontal cortex activity during cue presentation underscoring its proposed role of “keeping pain out of mind”. This anticipatory right dorsolateral prefrontal cortex signal increase was positively correlated with periaqueductal gray (PAG) activity when the expected high-intensity stimulation was applied. A drift rate increase during unexpected high-intensity pain was reflected in amygdala engagement and increased functional connectivity between amygdala and PAG. Our findings suggest involvement of the PAG in both decision-making bias and altered information processing to implement expectancy effects on pain. 
    more » « less
  4. The intrinsic uncertainty of sensory information (i.e., evidence) does not necessarily deter an observer from making a reliable decision. Indeed, uncertainty can be reduced by integrating (accumulating) incoming sensory evidence. It is widely thought that this accumulation is instantiated via recurrent rate-code neural networks. Yet, these networks do not fully explain important aspects of perceptual decision-making, such as a subject’s ability to retain accumulated evidence during temporal gaps in the sensory evidence. Here, we utilized computational models to show that cortical circuits can switch flexibly between “retention” and “integration” modes during perceptual decision-making. Further, we found that, depending on how the sensory evidence was readout, we could simulate “stepping” and “ramping” activity patterns, which may be analogous to those seen in different studies of decision-making in the primate parietal cortex. This finding may reconcile these previous empirical studies because it suggests these two activity patterns emerge from the same mechanism. 
    more » « less
  5. van den Berg, Ronald (Ed.)
    Categorical judgments can systematically bias the perceptual interpretation of stimulus features. However, it remained unclear whether categorical judgments directly modify working memory representations or, alternatively, generate these biases via an inference process down-stream from working memory. To address this question we ran two novel psychophysical experiments in which human subjects had to reverse their categorical judgments about a stimulus feature, if incorrect, before providing an estimate of the feature. If categorical judgments indeed directly altered sensory representations in working memory, subjects’ estimates should reflect some aspects of their initial (incorrect) categorical judgment in those trials. We found no traces of the initial categorical judgment. Rather, subjects seemed to be able to flexibly switch their categorical judgment if needed and use the correct corresponding categorical prior to properly perform feature inference. A cross-validated model comparison also revealed that feedback may lead to selective memory recall such that only memory samples that are consistent with the categorical judgment are accepted for the inference process. Our results suggest that categorical judgments do not modify sensory information in working memory but rather act as top-down expectations in the subsequent sensory recall and inference process. 
    more » « less