HEX-Pis a probe-class mission concept that will combine high spatial resolution X-ray imaging ( FWHM) and broad spectral coverage (0.2–80 keV) with an effective area superior toNuSTARabove 10 keV to enable revolutionary new insights into a variety of astrophysical problems, especially those related to compact objects, accretion and outflows.HEX-Pwill launch at a time when the sky is being routinely scanned for transient gravitational wave, electromagnetic and neutrino phenomena that will require the capabilities of a sensitive, broadband X-ray telescope for follow up studies. These include the merger of compact objects such as neutron stars and black holes, stellar explosions, and the birth of new compact objects. A response time to target of opportunity observation requests of hours and a field of regard of 3πsteradians will allowHEX-Pto probe the accretion and ejecta from these transient phenomena through the study of relativistic outflows and reprocessed emission, provide unique capabilities for understanding jet physics, and potentially revealing the nature of the central engine. 
                        more » 
                        « less   
                    This content will become publicly available on November 25, 2025
                            
                            The high energy X-ray probe (HEX-P): science overview
                        
                    
    
            To answer NASA’s call for a sensitive X-ray observatory in the 2030s, we present the High Energy X-ray Probe (HEX-P) mission concept. HEX-P is designed to provide the required capabilities to explore current scientific questions and make new discoveries with a broadband X-ray observatory that simultaneously measures sources from 0.2 to 80 keV. HEX-P’s main scientific goals include: 1) understand the growth of supermassive black holes and how they drive galaxy evolution; 2) explore the lower mass populations of white dwarfs, neutron stars, and stellar-mass black holes in the nearby universe; 3) explain the physics of the mysterious corona, the luminous plasma close to the central engine of accreting compact objects that dominates cosmic X-ray emission; and 4) find the sources of the highest energy particles in the Galaxy. These goals motivate a sensitive, broadband X-ray observatory with imaging, spectroscopic, and timing capabilities, ensuring a versatile platform to serve a broad General Observer (GO) and Guest Investigator (GI) community. In this paper, we present an overview of these mission goals, which have been extensively discussed in a collection of more than a dozen papers that are part of this Research Topic volume. The proposed investigations will address key questions in all three science themes highlighted by Astro2020, including their associated priority areas. HEX-P will extend the capabilities of the most sensitive low- and high-energy X-ray satellites currently in orbit and will complement existing and planned high-energy, time-domain, and multi-messenger facilities in the next decade. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2224255
- PAR ID:
- 10613958
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- ApJ
- Date Published:
- Journal Name:
- Frontiers in Astronomy and Space Sciences
- Volume:
- 11
- ISSN:
- 2296-987X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            ABSTRACT We aim to determine the intrinsic far-Infrared (far-IR) emission of X-ray-luminous quasars over cosmic time. Using a 16 deg2 region of the Stripe 82 field surveyed by XMM-Newton and Herschel Space Observatory, we identify 2905 X-ray luminous (LX > 1042 erg/s) active galactic nuclei (AGN) in the range z ≈ 0–3. The IR is necessary to constrain host galaxy properties such as star formation rate (SFR) and gas mass. However, only 10 per cent of our AGN are detected both in the X-ray and IR. Because 90 per cent of the sample is undetected in the far-IR by Herschel, we explore the mean IR emission of these undetected sources by stacking their Herschel/SPIRE images in bins of X-ray luminosity and redshift. We create stacked spectral energy distributions from the optical to the far-IR, and estimate the median SFR, dust mass, stellar mass, and infrared luminosity using a fitting routine. We find that the stacked sources on average have similar SFR/Lbol ratios as IR detected sources. The majority of our sources fall on or above the main sequence line suggesting that X-ray selection alone does not predict the location of a galaxy on the main sequence. We also find that the gas depletion time scales of our AGN are similar to those of dusty star forming galaxies. This suggests that X-ray selected AGN host high star formation and that there are no signs of declining star formation.more » « less
- 
            ABSTRACT The sensitivity of X-ray facilities and our ability to detect fainter active galactic nuclei (AGNs) will increase with the upcoming Athena mission and the AXIS and Lynx concept missions, thus improving our understanding of supermassive black holes (BHs) in a luminosity regime that can be dominated by X-ray binaries. We analyse the population of faint AGNs ($$L_{\rm x, 2{-}10 \, keV}\leqslant 10^{42}\, \rm erg\,s^{ -1}$$) in the Illustris, TNG100, EAGLE, and SIMBA cosmological simulations, and find that the properties of their host galaxies vary from one simulation to another. In Illustris and EAGLE, faint AGNs are powered by low-mass BHs located in low-mass star-forming galaxies. In TNG100 and SIMBA, they are mostly associated with more massive BHs in quenched massive galaxies. We model the X-ray binary (XRB) populations of the simulated galaxies, and find that AGNs often dominate the galaxy AGN + XRB hard X-ray luminosity at z > 2, while XRBs dominate in some simulations at z < 2. Whether the AGN or XRB emission dominates in star-forming and quenched galaxies depends on the simulations. These differences in simulations can be used to discriminate between galaxy formation models with future high-resolution X-ray observations. We compare the luminosity of simulated faint AGN host galaxies to observations of stacked galaxies from Chandra. Our comparison indicates that the simulations post-processed with our X-ray modelling tend to overestimate the AGN + XRB X-ray luminosity; luminosity that can be strongly affected by AGN obscuration. Some simulations reveal clear AGN trends as a function of stellar mass (e.g. galaxy luminosity drop in massive galaxies), which are not apparent in the observations.more » « less
- 
            ABSTRACT Owing to their quiet evolutionary histories, nearby dwarf galaxies (stellar masses $$M_\star \lesssim 3 \times 10^9 \, \mathrm{M}_\odot$$) have the potential to teach us about the mechanism(s) that ‘seeded’ the growth of supermassive black holes, and also how the first stellar mass black holes formed and interacted with their environments. Here, we present high spatial resolution observations of three dwarf galaxies in the X-ray (Chandra), the optical/near-infrared (Hubble Space Telescope), and the radio (Karl G. Jansky Very Large Array). These three galaxies were previously identified as hosting candidate active galactic nuclei on the basis of lower resolution X-ray imaging. With our new observations, we find that X-ray sources in two galaxies (SDSS J121326.01+543631.6 and SDSS J122111.29+173819.1) are off-nuclear and lack corresponding radio emission, implying they are likely luminous X-ray binaries. The third galaxy (Mrk 1434) contains two X-ray sources (each with LX ≈ 1040 erg s−1) separated by 2.8 arcsec, has a low metallicity [12 + log(O/H) = 7.8], and emits nebular He ii λ4686 line emission. The northern source has spatially coincident point-like radio emission at 9.0 GHz and extended radio emission at 5.5 GHz. We discuss X-ray binary interpretations (where an ultraluminous X-ray source blows a ‘radio bubble’) and active galactic nucleus interpretations (where an $$\approx 4\times 10^5 \, \mathrm{M}_\odot$$ black hole launches a jet). In either case, we find that the He ii emission cannot be photoionized by the X-ray source, unless the source was ≈30–90 times more luminous several hundred years ago.more » « less
- 
            Abstract A subset of galaxies have dense nuclei, and when these galaxies are accreted and tidally stripped, the nuclei can masquerade as globular clusters in the halos of large galaxies. If these nuclei contain massive central black holes, some may accrete gas and become observable as active galactic nuclei. Previous studies have found that candidate stripped nuclei rarely host luminous X-ray sources, but these studies were typically restricted to both the most massive candidate nuclei and the most luminous X-ray sources. Here we use new and archival Chandra and XMM-Newton data to search for X-ray emission in a near-complete sample of massive globular clusters and candidate stripped nuclei in the nearest accessible elliptical galaxy, NGC 5128. This sample has the unique advantage that the candidate stripped nuclei are identified dynamically via elevated mass-to-light ratios (M/LV). Our central result is that 5/22 ( %) of the candidate stripped nuclei have X-ray sources down to a typical limit ofLX∼ 5 × 1036erg s−1, a fraction lower than or comparable to that among massive clusters with normalM/LV(16/41; %). Hence we confirm and extend the result that nearly all X-ray sources in stripped nuclei are likely to be X-ray binaries rather than active galactic nuclei. If the candidate stripped nuclei have black holes of typical masses ∼2 × 105M⊙needed to explain their elevatedM/LV, then they have typical Eddington ratios of ≲ 2 × 10−6. This suggests that it will be challenging to conduct an accretion census of wandering black holes around even nearby galaxies.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
