skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Forb diversity globally is harmed by nutrient enrichment but can be rescued by large mammalian herbivory
Abstract Forbs (“wildflowers”) are important contributors to grassland biodiversity but are vulnerable to environmental changes. In a factorial experiment at 94 sites on 6 continents, we test the global generality of several broad predictions: (1) Forb cover and richness decline under nutrient enrichment, particularly nitrogen enrichment. (2) Forb cover and richness increase under herbivory by large mammals. (3) Forb richness and cover are less affected by nutrient enrichment and herbivory in more arid climates, because water limitation reduces the impacts of competition with grasses. (4) Forb families will respond differently to nutrient enrichment and mammalian herbivory due to differences in nutrient requirements. We find strong evidence for the first, partial support for the second, no support for the third, and support for the fourth prediction. Our results underscore that anthropogenic nitrogen addition is a major threat to grassland forbs, but grazing under high herbivore intensity can offset these nutrient effects.  more » « less
Award ID(s):
2045968 1831944
PAR ID:
10614020
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Biology
Volume:
8
Issue:
1
ISSN:
2399-3642
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Fire and herbivory have profound effects on vegetation in savanna ecosystems, but little is known about how different herbivore groups influence vegetation dynamics after fire. We assessed the separate and combined effects of herbivory by cattle and wild meso‐ and megaherbivores on postfire herbaceous vegetation cover, species richness, and species turnover in a savanna ecosystem in central Kenya. We measured these vegetation attributes for five sampling periods (from 2013 to 2017) in prescribed burns and unburned areas located within a series of replicated long‐term herbivore exclosures that allow six different combinations of cattle and wild meso‐ and megaherbivores (elephants and giraffes). Vegetation cover (grasses, mainly) and species richness were initially reduced by burning but recovered by 15–27 months after fire, suggesting strong resilience to infrequent fire. However, the rates of recovery differed in plots accessible by different wild and domestic herbivore guilds. Wildlife (but not cattle) delayed postfire recovery of grasses, and the absence of wildlife (with or without cattle) delayed recovery of forbs. Herbivory by only cattle increased grass species richness in burned relative to unburned areas. Herbivory by cattle (with or without wildlife), however, reduced forb species richness in burned relative to unburned areas. Herbivory by wild ungulates (but not cattle) increased herbaceous species turnover in burned relative to unburned areas. Megaherbivores had negligible modifying effects on these results. This study demonstrates that savanna ecosystems are remarkably resilient to infrequent fires, but postfire grazing by cattle and wild mesoherbivores exerts different effects on recovery trajectories of herbaceous vegetation. 
    more » « less
  2. Abstract Reordering of abundances among species is a common response in communities whether affected by anthropogenic drivers or natural disturbance. However, understanding how competitive relationships drive community dynamics under global environmental change remains limited, primarily due to uncertainties related to changes in species interactions and the scarcity of long‐term observations. By combining long‐term data and time series analysis tools, we quantified the compositional dynamics and causal interactions among functional groups of an arid grassland community under chronic nutrient enrichment for 15 years following wildfire. We hypothesized that chronic nutrient addition would promote species reordering among dominant grasses and subordinate annual forbs after wildfire, thereby increasing biomass and compositional variation over the long term. Contrary to expectations, while the abundance of the dominant grassBouteloua eriopoda(black grama) declined immediately after the wildfire, the increase in annual forbs under N addition did not occur until a decade later. Convergent cross‐mapping revealed that annuals were causally influenced by black grama abundance and maintained relatively lower abundance in control plots. However, with N addition, this causal interaction from black grama to annuals disappeared. Accordingly, temporal variability of biomass and community composition increased as the abundance of annuals rose. Combined with evidence of precipitation response, these results imply that the competitive advantage of perennial plants over annual forbs could serve as a stabilizing mechanism for community variability by limiting the response of annuals to precipitation fluctuations. However, this stabilizing process is disrupted by the cumulative effects of chronic nitrogen addition. This long‐term experiment provides new insights into the destabilizing effects of community reordering, without changes in species richness, in response to anthropogenic nutrient loading. 
    more » « less
  3. Kim, Daehyun (Ed.)
    Nutrient enrichment alters plant community structure and function at a global scale. Coastal plant systems are expected to experience increased rates of nitrogen and phosphorus deposition by 2100, caused mostly by anthropogenic activity. Despite high density of studies investigating connections between plant community structure and ecosystem function in response to nutrient addition, inconsistencies in system response based on the ecosystem in question calls for more detailed analyses of nutrient impacts on community organization and resulting productivity response. Here, we focus on nutrient addition impacts on community structure and organization as well as productivity of different lifeforms in a coastal grassland. We established long-term nutrient enrichment plots in 2015 consisting of control (C), nitrogen (N), phosphorus (P), and nitrogen + phosphorus (NP) treatments. In 2017 we collected graminoid and forb productivity, root productivity, and community composition for each plot. We found no N x P interaction, but N enrichment was a significant main effect on productivity, highlighting N limitation in coastal systems. Importantly, nutrient enrichment treatments did not alter root productivity. However, all treatments caused significant differences in community composition. Using rank abundance curves, we determined that community composition differences were driven by increased dominance of nitrophilous graminoids, re-organization of subordinate species, and species absences in N and NP plots. Results of this study highlight how coastal grassland communities are impacted by nutrient enrichment. We show that community re-organization, increased dominance, and absence of critical species are all important mechanisms that reflect community-level impacts of nutrient enrichment in our coastal grassland site. 
    more » « less
  4. Abstract Anthropogenic nutrient enrichment and shifts in herbivory can lead to dramatic changes in the composition and diversity of aboveground plant communities. In turn, this can alter seed banks in the soil, which are cryptic reservoirs of plant diversity. Here, we use data from seven Nutrient Network grassland sites on four continents, encompassing a range of climatic and environmental conditions, to test the joint effects of fertilization and aboveground mammalian herbivory on seed banks and on the similarity between aboveground plant communities and seed banks. We find that fertilization decreases plant species richness and diversity in seed banks, and homogenizes composition between aboveground and seed bank communities. Fertilization increases seed bank abundance especially in the presence of herbivores, while this effect is smaller in the absence of herbivores. Our findings highlight that nutrient enrichment can weaken a diversity maintaining mechanism in grasslands, and that herbivory needs to be considered when assessing nutrient enrichment effects on seed bank abundance. 
    more » « less
  5. Abstract Two of the major factors that control the composition of herbaceous plant communities are competition for limiting soil resources and herbivory. We present results from a 14-year full factorial experiment in a tallgrass prairie ecosystem that crossed nitrogen (N) addition with fencing to exclude white-tailed deer,Odocoileus virginianus, from half the plots. Deer presence was associated with only modest decreases in aboveground plant biomass (14% decrease; −45 ± 19 g m−2) with no interaction with N addition. N addition at 5.44 and 9.52 g N m−2 year−1led to increases in biomass. There were weak increases in species richness associated with deer presence, but only for no or low added N (1 and 2 g N m−2 year−1). However, the presence of deer greatly impacted the abundances of some of the dominant perennial forb species, but not the dominant grasses. Deer presence increased the abundance of the forbArtemisia ludovicianaby 34 ± 12 SE g m−2(94%) and decreased the forbSolidago rigidaby 32 ± 13 SE g m−2(79%). We suggest that these changes may have resulted from trade-offs in plant competitive ability for soil N versus resistance to deer herbivory. Field observations suggest deer acted as florivores, mainly consuming the flowers of susceptible forb species. The preferential consumption of flowers of forbs that seem to be superior N competitors appears to create an axis of interspecific niche differentiation. The overpopulation of white-tailed deer in many tallgrass reserves likely structures the abundance of forb species. 
    more » « less