skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 24, 2026

Title: DOPL: Direct Online Preference Learning for Restless Bandits with Preference Feedback
Restless multi-armed bandits (RMAB) has been widely used to model constrained sequential decision making problems, where the state of each restless arm evolves according to a Markov chain and each state transition generates a scalar reward. However, the success of RMAB crucially relies on the availability and quality of reward signals. Unfortunately, specifying an exact reward function in practice can be challenging and even infeasible. In this paper, we introduce Pref-RMAB, a new RMAB model in the presence of preference signals, where the decision maker only observes pairwise preference feedback rather than scalar reward from the activated arms at each decision epoch. Preference feedback, however, arguably contains less information than the scalar reward, which makes Pref-RMAB seemingly more difficult. To address this challenge, we present a direct online preference learning (DOPL) algorithm for Pref-RMAB to efficiently explore the unknown environments, adaptively collect preference data in an online manner, and directly leverage the preference feedback for decision-makings. We prove that DOPL yields a sublinear regret. To our best knowledge, this is the first algorithm to ensure $$\tilde{\mathcal{O}}(\sqrt{T\ln T})$$ regret for RMAB with preference feedback. Experimental results further demonstrate the effectiveness of DOPL.  more » « less
Award ID(s):
2337914
PAR ID:
10614307
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
The Thirteenth International Conference on Learning Representations (ICLR 2025)
Date Published:
Subject(s) / Keyword(s):
Restless Multi-Armed Bandits, Preference Feedback, Online Preference Learning
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Restless multi-armed bandits (RMAB) have been widely used to model sequential decision making problems with constraints. The decision maker (DM) aims to maximize the expected total reward over an infinite horizon under an “instantaneous activation constraint” that at most B arms can be activated at any decision epoch, where the state of each arm evolves stochastically according to a Markov decision process (MDP). However, this basic model fails to provide any fairness guarantee among arms. In this paper, we introduce RMAB-F, a new RMAB model with “long-term fairness constraints”, where the objective now is to maximize the longterm reward while a minimum long-term activation fraction for each arm must be satisfied. For the online RMAB-F setting (i.e., the underlying MDPs associated with each arm are unknown to the DM), we develop a novel reinforcement learning (RL) algorithm named Fair-UCRL. We prove that Fair-UCRL ensures probabilistic sublinear bounds on both the reward regret and the fairness violation regret. Compared with off-the-shelf RL methods, our Fair-UCRL is much more computationally efficient since it contains a novel exploitation that leverages a low-complexity index policy for making decisions. Experimental results further demonstrate the effectiveness of our Fair-UCRL. 
    more » « less
  2. We consider multiple parallel Markov decision processes (MDPs) coupled by global constraints, where the time varying objective and constraint functions can only be observed after the decision is made. Special attention is given to how well the decision maker can perform in T slots, starting from any state, compared to the best feasible randomized stationary policy in hindsight. We develop a new distributed online algorithm where each MDP makes its own decision each slot after observing a multiplier computed from past information. While the scenario is significantly more challenging than the classical online learning context, the algorithm is shown to have a tight O( T ) regret and constraint viola- tions simultaneously. To obtain such a bound, we combine several new ingredients including ergodicity and mixing time bound in weakly coupled MDPs, a new regret analysis for online constrained optimization, a drift analysis for queue processes, and a perturbation analysis based on Farkas’ Lemma. 
    more » « less
  3. The expanding role of reinforcement learning (RL) in safety-critical system design has promoted ω-automata as a way to express learning requirements—often non-Markovian—with greater ease of expression and interpretation than scalar reward signals. However, real-world sequential decision making situations often involve multiple, potentially conflicting, objectives. Two dominant approaches to express relative preferences over multiple objectives are: (1)weighted preference, where the decision maker provides scalar weights for various objectives, and (2)lexicographic preference, where the decision maker provides an order over the objectives such that any amount of satisfaction of a higher-ordered objective is preferable to any amount of a lower-ordered one. In this article, we study and develop RL algorithms to compute optimal strategies in Markov decision processes against multiple ω-regular objectives under weighted and lexicographic preferences. We provide a translation from multiple ω-regular objectives to a scalar reward signal that is bothfaithful(maximising reward means maximising probability of achieving the objectives under the corresponding preference) andeffective(RL quickly converges to optimal strategies). We have implemented the translations in a formal reinforcement learning tool,Mungojerrie, and we present an experimental evaluation of our technique on benchmark learning problems. 
    more » « less
  4. In this paper, we consider the problem of online monotone DR-submodular maximization subject to long-term stochastic constraints. Specifically, at each round $$t\in [T]$$, after committing an action $$\bx_t$$, a random reward $$f_t(\bx_t)$$ and an unbiased gradient estimate of the point $$\widetilde{\nabla}f_t(\bx_t)$$ (semi-bandit feedback) are revealed. Meanwhile, a budget of $$g_t(\bx_t)$$, which is linear and stochastic, is consumed of its total allotted budget $$B_T$$. We propose a gradient ascent based algorithm that achieves $$\frac{1}{2}$$-regret of $$\mathcal{O}(\sqrt{T})$$ with $$\mathcal{O}(T^{3/4})$$ constraint violation with high probability. Moreover, when first-order full-information feedback is available, we propose an algorithm that achieves $(1-1/e)$-regret of $$\mathcal{O}(\sqrt{T})$$ with $$\mathcal{O}(T^{3/4})$$ constraint violation. These algorithms significantly improve over the state-of-the-art in terms of query complexity. 
    more » « less
  5. This paper introduces a novel multi-armed bandits framework, termed Contextual Restless Bandits (CRB), for complex online decision-making. This CRB framework incorporates the core features of contextual bandits and restless bandits, so that it can model both the internal state transitions of each arm and the influence of external global environmental contexts. Using the dual decomposition method, we develop a scalable index policy algorithm for solving the CRB problem, and theoretically analyze the asymptotical optimality of this algorithm. In the case when the arm models are unknown, we further propose a model-based online learning algorithm based on the index policy to learn the arm models and make decisions simultaneously. Furthermore, we apply the proposed CRB framework and the index policy algorithm specifically to the demand response decision-making problem in smart grids. The numerical simulations demonstrate the performance and efficiency of our proposed CRB approaches. 
    more » « less