skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tropical Cyclone Heat Potential and the Rapid Intensification of Hurricane Harvey in the Texas Bight
Abstract Harvey entered the Gulf of Mexico as a tropical depression on 23 August 2017; two days later it had strengthened to a category 1 hurricane. Over the following 30 hr Harvey rapidly intensified, reaching the Texas Bight as a category 3 storm. This intensification continued while Harvey crossed the shelf, making landfall as a category 4 storm 60 km east of Corpus Christi, TX on 26 August. A hydrographic survey two weeks prior to landfall shows that the tropical cyclone heat potential across the Texas Bight was approximately 35 kJ/cm2, which is 55 kJ/cm2less than the amount of upper ocean heat normally associated with intensification. Combined with buoy, float, and satellite data, we use hydrographic surveys to study the conditions of the Texas Bight that contributed to Harvey's rapid intensification. We find that, at the time of landfall, the Texas Bight was well mixed with very warm water extending from the surface to bottom. As a consequence, mixing induced by Harvey had a small impact on surface temperatures which remained high and supported continued intensification. The results show that tropical cyclone heat potential is not an effective metric for hurricane intensity prediction in shallow water, and illustrate the need for continuous subsurface monitoring in order to improve hurricane forecasts.  more » « less
Award ID(s):
1760381
PAR ID:
10614348
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Geophysical Union
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
124
Issue:
4
ISSN:
2169-9275
Page Range / eLocation ID:
2440 to 2451
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hurricane storm surges are influenced by wind intensity, forward speed, width and slope of the ocean bottom, central pressure, angle of approach, shape of coastal lines, local features, and storm size. A numerical experiment is conducted using the Advanced Circulation + Simulation and Simulating Waves Nearshore (ADCIRC + SWAN) coupled model for understanding the effects of wind intensity, forward speed, and wave on the storm surges caused by Hurricane Harvey. The ADCIRC + SWAN is used to simulate hurricane storm surges and waves. The wind fields of Hurricane Harvey were reconstructed from observed data, aided by a variety of methodologies and analyses conducted by Ocean Weather Inc (OWI) after the event. These reconstructed wind fields were used as the meteorological forcing in the base case in ADCIRC+SWAN to investigate the storm surges caused by the hurricane. Hurricane Harvey was the second most costly hurricane in the United States, causing severe urban flooding by dropping more than 60 inches of rainfall in Texas. The hurricane made three landfalls, with its first landfall as a Category 4 based on the Saffir–Simpson Hurricane Wind Scale (SSHWS), with wind intensities of 212.98 km/h (59 m/s). The storm surges caused by Hurricane Harvey were unique due to the slow speed, crooked tracks, triple landfalls in the USA, and excessive rain. The model’s storm surge and wave results were compared against observed data. High water marks at 21 locations and time series at 12 National Oceanic and Atmospheric Administration (NOAA) gauges were compared with the generated results. Several cases were investigated by increasing or decreasing the wind intensity or hurricane forward speed by 25% of the OWI wind and pressure data. The effects of the wave were analyzed by comparing the results obtained from ADCIRC + SWAN (with waves) and ADCIRC (without waves) models. The study found that the changes in wind intensity had the most significant effect on storm surges, followed by wave and forward speed changes. This study signifies the importance of considering these factors to enhance accuracy in predicting storm surges. 
    more » « less
  2. Abstract Tropical cyclones cause significant inland hazards, including wind damage and freshwater flooding, which depend strongly on how storm intensity evolves after landfall. Existing theoretical predictions for storm intensification and equilibrium storm intensity have been tested over the open ocean but have not yet been applied to storms after landfall. Recent work examined the transient response of the tropical cyclone low-level wind field to instantaneous surface roughening or drying in idealized axisymmetric f -plane simulations. Here, experiments testing combined surface roughening and drying with varying magnitudes of each are used to test theoretical predictions for the intensity response. The transient response to combined surface forcings can be reproduced by the product of their individual responses, in line with traditional potential intensity theory. Existing intensification theory is generalized to weakening and found capable of reproducing the time-dependent inland intensity decay. The initial (0–10 min) rapid decay of near-surface wind caused by surface roughening is not captured by existing theory but can be reproduced by a simple frictional spindown model, where the decay rate is a function of surface drag coefficient. Finally, the theory is shown to compare well with the prevailing empirical decay model for real-world storms. Overall, results indicate the potential for existing theory to predict how tropical cyclone intensity evolves after landfall. 
    more » « less
  3. null (Ed.)
    Abstract Tropical Storm Bill produced over 400 mmof rainfall to portions of southern Oklahoma from 16-20 June 2015, adding to the catastrophic urban and river flooding that occurred throughout the region in the month prior to landfall. The unprecedented excessive precipitation event that occurred across Oklahoma and Texas during May and June 2015 resulted in anomalously high soil moisture and latent heat fluxes over the region, acting to increase the available boundary layer moisture. Tropical Storm Bill progressed inland over the region of anomalous soil moisture and latent heat fluxes which helped maintain polarimetric radar signatures associated with tropical, warm rain events. Vertical profiles of polarimetric radar variables such as Z H , Z DR , K DP , and ρ hv were analyzed in time and space over Texas and Oklahoma. The profiles suggest that Tropical Storm Bill maintained warm rain signatures and collision-coalescence processes as it tracked hundreds of kilometers inland away from the landfall point consistent with tropical cyclone precipitation characteristics. Dual-frequency precipitation radar observations from the NASA GPM DPR were also analyzed post-landfall and showed similar signatures of collision-coalescence while Bill moved over north Texas, southern Oklahoma, eastern Missouri, and western Kentucky. 
    more » « less
  4. Abstract The 2023 Atlantic hurricane season was above normal, producing 20 named storms, 7 hurricanes, 3 major hurricanes, and seasonal accumulated cyclone energy that exceeded the 1991–2020 average. Hurricane Idalia was the most damaging hurricane of the year, making landfall as a Category 3 hurricane in Florida, resulting in eight direct fatalities and 3.6 billion U.S. dollars in damage. The above-normal 2023 hurricane season occurred during a strong El Niño event. El Niño events tend to be associated with increased vertical wind shear across the Caribbean and tropical Atlantic, yet vertical wind shear during the peak hurricane season months of August–October was well below normal. The primary driver of the above-normal season was likely record warm tropical Atlantic sea surface temperatures (SSTs), which effectively counteracted some of the canonical impacts of El Niño. The extremely warm tropical Atlantic and Caribbean were associated with weaker-than-normal trade winds driven by an anomalously weak subtropical ridge, resulting in a positive wind–evaporation–SST feedback. We tested atmospheric circulation sensitivity to SSTs in both the tropical and subtropical Pacific and the Atlantic using the atmospheric component of the Community Earth System Model, version 2.3. We found that the extremely warm Atlantic was the primary driver of the reduced vertical wind shear relative to other moderate/strong El Niño events. The concentrated warmth in the eastern tropical Pacific in August–October may have contributed to increased levels of vertical wind shear than if the warming had been more evenly spread across the eastern and central tropical Pacific. 
    more » « less
  5. Abstract Hurricane Patricia (2015) formed over the eastern North Pacific and is the most intense tropical cyclone (TC) on record with a maximum sustained wind speed of 95 m s−1, which presented a great forecasting challenge due to its unprecedented rapid intensification, record-breaking lifetime maximum intensity, and subsequent rapid weakening. The intensity and structure changes in Patricia were successfully simulated in a control experiment using a two-way interactive, quadruply nested version of the Weather Research and Forecasting Model with both initial and lateral boundary conditions from the Global Forecast System Final Analysis data. The successful simulation resulted from the inclusion of dissipative heating, realistic horizontal mixing length, and sea-spray-mediated heat flux. The relative contributions of these processes were assessed based on a series of ensemble-based sensitivity experiments and energetic diagnostics. Results show that dissipative heating and reduced horizontal mixing length had the most significant impacts on the intensification rate of Patricia after it reached an intensity of category 3, contributing 25.8% and 28.9% to the intensification rate and 11.7% and 14.1% to the lifetime maximum intensity, respectively. The contribution by spray-mediated heat flux increased significantly with wind speed, contributing up to 20.1% to the intensification rate and 20% to the surface energy flux under the eyewall at the wind speed of 90 m s−1. An alternative surface drag coefficient scheme and a constant surface roughness for moisture and heat were also tested and discussed via sensitivity experiments. The study provides insights into the physical processes key to successful simulations and forecasts of extremely strong TCs. 
    more » « less