Abstract Global warming is one of the most significant and widespread effects of climate change. While early life stages are particularly vulnerable to increasing temperatures, little is known about the molecular processes that underpin their capacity to adapt to temperature change during early development. Using a quantitative proteomics approach, we investigated the effects of thermal stress on octopus embryos. We exposedOctopus berrimaembryos to different temperature treatments (control 19°C, current summer temperature 22°C, or future projected summer temperature 25°C) until hatching. By comparing their protein expression levels, we found that future projected temperatures significantly reduced levels of key eye proteins such as S‐crystallin and retinol dehydrogenase 12, suggesting the embryonic octopuses had impaired vision at elevated temperature. We also found that this was coupled with a cellular stress response that included a significant elevation of proteins involved in molecular chaperoning and redox regulation. Energy resources were also redirected away from non‐essential processes such as growth and digestion. These findings, taken together with the high embryonic mortality observed under the highest temperature, identify critical physiological functions of embryonic octopuses that may be impaired under future warming conditions. Our findings demonstrate the severity of the thermal impacts on the early life stages of octopuses as demonstrated by quantitative proteome changes that affect vision, protein chaperoning, redox regulation and energy metabolism as critical physiological functions that underlie the responses to thermal stress.
more »
« less
This content will become publicly available on June 1, 2026
Projected warming disrupts embryonic development and hatch timing in Antarctic fish
Abstract Rising ocean temperatures pose significant threats to marine ectotherms. Sensitivity to temperature change varies across life stages, with embryos often being less tolerant to thermal perturbation than adults. Antarctic notothenioid fishes evolved to occupy a narrow, cold thermal regime (−2 to +2°C) as the high-latitude Southern Ocean (SO) cooled to its present icy temperatures, and they are particularly vulnerable to small temperature changes, which makes them ideal sentinel species for assessing climate change impacts. Here, we detail how predicted warming of the SO may affect embryonic development in the Antarctic bullhead notothen,Notothenia coriiceps. Experimental embryos were incubated at +4°C, a temperature projected for the high-latitude SO within the next 100–200 years under high emission climate models, whereas control embryos were incubated at present-day ambient temperature, ∼0°C. Elevated temperature caused a high incidence of embryonic morphological abnormalities, including body axis kinking/curvature and reduced body size. Experimental embryos also developed more rapidly, such that they hatched 68 days earlier than controls (87 vs. 155 days post-fertilization). Accelerated development disrupted the evolved timing of seasonal hatching, shifting larval emergence into the polar winter when food availability is scarce. Transcriptomic analyses revealed molecular signatures of hypoxia and disrupted protein-folding in near-hatching embryos, indicative of severe cellular stress. Predictive modeling suggested that temperature-induced developmental disruptions would narrow seasonal reproductive windows, thereby threatening population viability under future climate scenarios. Together, our findings underscore the vulnerability of Antarctic fish embryos to higher water temperature and highlight the urgent need to understand the consequences of disruption of this important trophic component on ecosystem stability in the SO. Significance StatementAntarctic fishes evolved cold-adapted phenotypes suited to the stable thermal conditions of the Southern Ocean, yet are threatened by rising temperatures. The impact of rising temperatures on early life stages in Antarctic fishes is not well understood; our findings show that projected warming may induce premature hatching, developmental abnormalities, and molecular stress responses in embryos, potentially reducing recruitment and leading to population instability and trophic-level ecosystem disruptions. These results underscore the urgency of assessing climate-driven vulnerabilities across life stages of Antarctic marine organisms to refine population projections and enhance conservation strategies amid ongoing environmental change.
more »
« less
- PAR ID:
- 10614390
- Publisher / Repository:
- bioRxiv
- Date Published:
- Format(s):
- Medium: X
- Institution:
- bioRxiv
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Synopsis Climate resilience, a focus of many recent studies, has been examined from ecological, physiological, and evolutionary perspectives. However, sampling biases toward adults, males, and certain species have made establishing the link between environmental change and population-level change problematic. Here, we used data from four laboratory studies, in which we administered pre- and postnatal stressors, such as suboptimal incubation temperature, heat stress, and food restriction, to zebra finches. We then quantified hatching success, posthatch survival, and reproductive success, to parameterize age-structured population dynamics models with the goal of estimating the effect of the stressors on relative population growth rates. Using the same model structure, we tested the hypothesis that early life stages influence population growth rate more than later life stages. Our models suggested that stressful events during embryonic development, such as suboptimal incubation temperatures and reduced gas exchange for the embryos, have a greater total impact on population growth than posthatch stressors, such as heat stress and food restriction. However, among life history traits, differences in hatching success and sex ratio of offspring in response to stressors changed population growth rates more than differences in any other demographic rate estimates. These results suggest that when predicting population resilience against climate change, it is critical to account for effects of climate change on all life stages, including early stages of life, and to incorporate individuals’ physiology and stress tolerance that likely influence future stress responses, reproduction, and survival.more » « less
-
Hidalgo, Manuel (Ed.)Abstract Warming temperatures elicit shifts in habitat use and geographic distributions of fishes, with uneven effects across life stages. Spawners and embryos often have narrower thermal tolerances than other life stages, and are thus particularly sensitive to warming. Here, we examine the spatiotemporal variability of thermal spawning habitat for Pacific cod in the eastern Bering Sea. Specifically, we use bottom temperatures from downscaled global climate models coupled with an experimentally-derived hatch success and temperature relationship to predict how the spatial extent, mean latitude, and consistency of thermal spawning habitat has varied over time. Predictions are validated with observations of spawning adults and early larvae. We find that habitat availability has not increased in the past but is predicted to increase and shift northward in the future, particularly if no climate change mitigation occurs. Habitat hotspots are consistent across shorter time periods but do shift across the shelf by the end of the century such that highly suitable areas in the past and present are not predicted to be suitable in the future. This work highlights the importance of coupling experimental data with climate models to identify the complex and mechanistic dynamics among temperature, life histories, and ecology, particularly under climate change.more » « less
-
Global warming is one of the primary drivers of habitat loss and population decline in numerous species, including birds, amphibians and marine life. Avian embryos exhibit ectothermic phenotypes during most of their incubation period and are also vulnerable to rising temperatures when parents cannot cool the nests. This vulnerability stems from their unique respiratory mechanisms, which utilize eggshell pores to exchange respiratory gases. The number of pores is fixed at oviposition, and embryos may experience hypoxia during later developmental stages, especially when exposed to elevated ambient/incubation temperatures. Our preliminary study on zebra finch (Taeniopygia guttata castanotis) embryos, where we covered 30% of the shell surface with beeswax and incubated at high (38.9°C) temperature, revealed that half of the individuals that failed to hatch had developed oedema in the hind neck region. This study shows that such physical anomalies occur during incubation prior to death. We found that embryos with oedema had a higher head-to-body ratio, independent of their relative brain mass. Furthermore, oedema formation was correlated with darker-coloured hearts, suggesting reduced blood oxygenation in these embryos. These results highlight the physiological challenges embryos face under suboptimal incubation conditions. This article is part of the theme issue ‘The biology of the avian respiratory system’.more » « less
-
ABSTRACT Warming associated with climate change is driving poleward shifts in the marine habitat of anadromous Pacific salmon (Oncorhynchusspp.). Yet the spawning locations for salmon to establish self‐sustaining populations and the consequences for the ecosystem if they should do so are unclear. Here, we explore the role of temperature‐dependent incubation survival and developmental phenology of coho salmon (Oncorhynchus kisutch) as a potential early life history barrier to establishment in an Arctic stream. We exposed embryos to temperatures previously recorded in the substrate of an Arctic groundwater spring‐fed spawning environment. Using a common garden experimental design, coho salmon embryos were exposed to treatments that thermally mimicked four spawning dates from August 1 to October 1 (AUG1, SEPT1, SEPT15, and OCT1). Spawning temperatures were 6°C at the warmest (AUG1) and 1.25°C at the coldest (OCT1). We observed low survival rates in SEPT1 (41%) and OCT1 (34%) and near complete mortality in the other treatments. While far below what is considered normal in benign hatchery‐like conditions, these rates suggest that temperatures experienced at these spawning dates are survivable. We detected differences in developmental rates across treatments; embryos developed 1.9 times faster in the warmest treatment (AUG1, 120 days) compared to the coldest (OCT1, 231 days). Differences in accumulated thermal units (ATUs) needed for hatching ranged from 392 ATUs in AUG1 to 270 ATUs in OCT1, revealing compensation in developmental requirements. Given these findings, the most thermally suitable spawning dates within our study are between September 15 and October 1, which facilitates hatching and projected nest emergence to occur in spring warming conditions (March–September). Broadly, our findings suggest that spawning sites within thermal tolerances that can support the survival and development of coho salmon exist in the North American Arctic. Whether the habitat is otherwise suitable for transitions through other life stages remains unknown.more » « less
An official website of the United States government
