skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 18, 2026

Title: Calibration of stalagmite trace elements with instrumental rainfall record from the Australian tropics
Stalagmites serve as valuable archives that significantly enhance our understanding of past climate and environmental changes. The trace element records preserved within stalagmites have been used to reconstruct past rainfall patterns at regional scale [1]. However, interpreting these geochemical proxies is challenging, as the functioning of the cave system, within its specific climatological and geological context, must be taken into account. Comparing instrumental climate measurements with these proxies from stalagmites that grew during the 20th century provides an opportunity to investigate how stalagmite geochemistry responds to variations in rainfall.In this study, we present results from a stalagmite collected from cave KNI-51, located in the Kimberley region of northeast Western Australia. Previous uranium–thorium disequilibrium dating of the stalagmite has yielded a high-precision age model (2 sd errors of ±1–2 years over much of the last century) and revealed rapid growth (1–2 mm/yr) [2], allowing for nearly annual resolution of geochemical records. We examined trace element variations related to historical annual rainfall fluctuations, retrieved from five stations near the cave area between 1915 and 2007. Comprehensive statistical analyses, accounting for stationarity and autocorrelation in the time series data, revealed significant correlations when comparing certain trace elements to both total annual rainfall and the rainfall recorded during the monsoon season (December to March). Notably, some trace elements exhibited a stronger response to rainfall occurring during the monsoon period. Furthermore, we applied rolling window correlation to assess the evolution and stability of these correlations over time, identifying intervals where the relationship between the time series appeared weaker or stronger.The multi-annual calibration provided critical insights into how the stalagmite recorded rainfall variability through trace elements fluctuations and represents a key step in defining the response times of the cave and stalagmite recording systems to changes in climate and water balance in the Kimberley region. The disclosed correspondence between the instrumental rainfall record and the trace element signals encoded in the stalagmite demonstrates that rainfall time series can be successfully reconstructed from stalagmites. This marks an important milestone in the development of a calibrated trace element–rainfall transfer function, which can be applied to past stalagmite geochemical records.[1]         S. F. Warken et al., “Reconstruction of late Holocene autumn/winter precipitation variability in SW Romania from a high-resolution speleothem trace element record,” Earth Planet. Sci. Lett., vol. 499, pp. 122–133, 2018, doi: https://doi.org/10.1016/j.epsl.2018.07.027.[2]         R. F. Denniston et al., “Expansion and contraction of the indo-pacific tropical rain belt over the last three millennia,” Sci. Rep., vol. 6, pp. 1–9, 2016, doi: 10.1038/srep34485.  more » « less
Award ID(s):
2147186
PAR ID:
10614572
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
European Geosciences Union
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. NA (Ed.)
    Speleothem paleoclimate records from the Peruvian Andes have been interpreted to reflect the strength of the South American monsoon. While these interpretations have been verified through comparison with other regional and global climate records, the mechanics of the cave environment that facilitate the preservation of this signal with such consistency remain unstudied. Here, we present four years of environmental data from Huagapo and Pacupahuain cave, and one year from Antipayarguna cave. The data reveal that the cave environment is very stable with little to no change in temperature and 100% relative humidity year-round. This stability in cave air is juxtaposed with the monsoonal drip water pulse that increases drip rates over 40 times on average across all seven monitored drip sites. Compared to the amount-weighted precipitation average δ18Oprecip value, the cave drip water δ18ODW values are evaporatively 18O enriched during infiltration through the soil/epikarst. As the monsoonal precipitation pulse fades and drip rates decrease, changes in the drip water chemistry (trace elements Mg/Ca and Sr/Ca, dissolved inorganic carbon δ13CDW, and δ18ODW values) indicate that prior calcite precipi- tation (PCP) drives the trace element and δ13CDW variability. The δ13Cc and δ18Oc values of farmed slide calcite are highly variable. However, high drip rate and lower cave air pCO2 during the monsoon combine to increase calcite precipitation rates. This causes speleothem records from these caves to be weighted toward annual monsoon conditions. Calcite isotope values from actively growing stalagmite tops support this finding. These results suggest that speleothems from these caves are sensitive to changes in monsoon precipitation amount, because it determines the duration of the monsoon drip water pulse, and therein, the extent of dry season PCP. Further, these data indicate that heterogeneity in the dolomitic limestone massif causes offsets between the carbon isotopes and trace metal concentrations between the caves, highlighting the need to normalize these datasets when chronology-stacking these proxies. 
    more » « less
  2. Over the late Holocene, a variety of hydroclimate-sensitive proxies have identified substantial, multidecadal changes in Indian summer monsoon (ISM) precipitation, the most prominent of which is the “4.2 ka event”. This interval, dated to ~4.2-3.9 ka, is associated with severe droughts across South Asia that are linked to societal change. Given the absence of the 4.2 ka event in polar records, the 4.2 ka event is generally associated with low latitude forcings, but no clear consensus on its origins has been reached. We investigated the ISM response to the 4.2 ka event through analysis of aragonite stalagmites from Siddha cave, formed in the lower Paleozoic Dhading dolomite in the Pokhara Valley of central Nepal (28.0˚N, 84.1˚E; ~850 m.a.s.l.). The climate of this region is dominated by small monthly variations in air temperature (21±5˚C) but strong precipitation seasonality associated with the ISM: ~80% of the annual 3900 mm of rainfall occurs between June and September. High uranium and low detrital thorium abundances in these stalagmites yield precise U/Th ages that all fall within stratigraphic order. These dates reveal continuous growth from 4.30-2.26 ka, interrupted only by a hiatus from 3.27-3.10 ka. Overlap with coeval aragonite stalagmites reveals generally consistent trends in carbon and oxygen isotope ratios, suggesting that these stalagmites reflect environmental variability and not secondary (e.g., kinetic) effects. Many stalagmite-based paleomonsoon reconstructions rely on oxygen isotope ratios, which track amount effects in regional rainfall. However, our on-going rainwater collection and analysis program, as well as a previous study conducted in Kathmandu, 120 km the east of Siddha cave, reveals that amount effects in precipitation are weak in this region, particularly during the monsoon season, and thus we rely instead on carbon isotope ratios, which have been demonstrated to track site-specific effective precipitation. Siddha cave stalagmite carbon isotopes, in contrast to other South Asian proxy records, indicate that ISM rainfall increased at Siddha cave from 4.13-3.91 ka. As a further test of this result, we analyzed uranium abundances in the section spanning 4.3-3.4 ka. Uranium serves as an indicator of prior aragonite precipitation and thus of hydroclimate, and like carbon isotopes, suggests increased ISM rainfall coincident with the 4.2 ka event. This precipitation anomaly is nearly identical in timing and structure but anti-phased with stalagmites from Mawmluh cave, northeastern India. We investigated the climatic origins of this precipitation dipole using observational data from the Global Precipitation Climatology Centre (GPCC) and Hadley Center Sea Ice and Sea Surface Temperature (HadISST) products. Preliminary spatial composites suggest that large precipitation differences between Mawmluh and Siddha caves are associated with SST anomalies in the equatorial Pacific. Additionally, superposed Epoch Analysis shows relatively rapid eastern Indian Ocean cooling during the summer monsoon season coeval with large precipitation differences between these sites. Our findings lend support to a tropical Indo-Pacific origin of the 4.2 ka event. 
    more » « less
  3. In the southwestern United States, California (CA) is one of the most climatically sensitive regions given its low (≤250 mm/year) seasonal precipitation and its inherently variable hydroclimate, subject to large magnitude modulation. To reconstruct past climate change in CA, cave calcite deposits (stalagmites) have been utilized as an archive for environmentally sensitive proxies, such as stable isotope compositions (δ18O, δ13C) and trace element concentrations (e.g., Mg, Ba, Sr). Monitoring the cave and associated surface environments, the chemical evolution of cave drip-water, the calcite precipitated from the drip-water, and the response of these systems to seasonal variability in precipitation and temperature is imperative for interpreting stalagmite proxies. Here we present monitored drip-water and physical parameters at Lilburn Cave, Sequoia Kings Canyon National Park (Southern Sierra Nevada), CA, and measured trace element concentrations (Mg, Sr, Ba, Cu, Fe, Mn) and stable isotopic compositions (δ18O, δ2H) of drip-water and for calcite (δ18O) precipitated on glass substrates over a two-year period (November 2018 to February 2021) to better understand how chemical variability at this site is influenced by local and regional precipitation and temperature variability. Despite large variability in surface temperatures and precipitation amount and source region (North Pacific vs. subtropical Pacific), Lilburn Cave exhibits a constant cave environment year-round. At two of the three sites within the cave, drip-water δ18O and δ2H are influenced seasonally by evaporative enrichment. At a third collection site in the cave, the drip-water δ18O responds solely to precipitation δ18O variability. The Mg/Ca, Ba/Ca, and Sr/Ca ratios are seasonally responsive to prior calcite precipitation at all sites but minimally to water-rock interaction. Lastly, we examine the potential of trace metals (e.g., Mn2+and Cu2+as a geochemical proxy of recharge and find that variability in their concentrations has high potential to denote the onset of the rainy season in the study region. The drip-water composition is recorded in the calcite, demonstrating that stalagmites from Lilburn Cave, and potentially more regionally, could record seasonal variability in weather even during periods of substantially reduced rainfall. 
    more » « less
  4. The Indian summer monsoon (ISM), which today supplies ~75% of annual precipitation to South Asia, has been reconstructed across previous centuries using a variety of hydroclimate-sensitive proxies. In some of these cases, ISM variability far exceeds that observed in the century-and-a-half-long instrumental record. Understanding the origins of these events is best addressed by developing a wide-ranging, multi-proxy network of high-resolution ISM reconstructions. In Nepal, ISM variability has been examined through tree rings, glacial ice, and lake sediments, but no stalagmite isotopic records of ISM rainfall have yet been published. Here we present a sub-decadally-resolved, precisely-dated, composite aragonite stalagmite record of ISM variability from Siddha Baba cave, central Nepal, for the last 2.7 kyr. A rainwater sampling program near the cave site, and a published study from Kathmandu (Adhikari et al., 2020), 150 km to the southeast, reveal that rainfall amount explains little of the observed variance in d18O values. Local hydroclimate is thus reconstructed from stalagmite 13C values, which we interpret as reflecting prior aragonite precipitation driven by changes in effective precipitation above the cave. ISM variability is apparent across a number of time scales, including centennial periods of reduced or enhanced rainfall coincident with societally-relevant precipitation regimes identified at other sites across South Asia. These include the Neo-Assyrian drought in the eastern Mediterranean and Middle East (2.7-2.5 kyr BP; Kathayat et al., 2019), the Mauria Empire (2.1-1.9 kyr BP), and the Guge Kingdom (0.9-0.3 kyr BP) pluvials in India and Tibet (Kathayat et al., 2017). A secular shift toward drier conditions since 0.5 kyr BP in the Siddha Baba record tracks the 18O records from Dasuopu glacier, Nepal Himalaya, and Sahiya cave, North India. Numerous multidecadal oscillations are also evident, including markedly wetter conditions during the 18th century, in the late Little Ice Age, apparent in the Dasuopu and Sahiya records. References Adhikari et al. (2020) Tellus B: Chem. Phys. Meteor., 72, 1-17. Kathayat et al. (2017) Sc. Adv., 7, e1701296. Kathayat et al. (2019) Sci. Adv., 5, eaax6656. 
    more » « less
  5. Australia has long been recognized as one of the world’s fire hotspots, but the Black Summer of 2019-2020, when 97,000 km2 were scorched across southeastern Australia, and the larger fires of northern Australia’s savanna and desert in 2023, may indicate a shift toward a higher level of fire activity. Placing these events in context requires developing precisely-dated, high resolution records of bushfire through periods with different climate and land use mean states. We reconstructed bushfire activity for the period 1110-2009 CE using polycyclic aromatic hydrocarbons (PAH) in three precisely-dated, fast-growing, and partially overlapping aragonite stalagmites from cave KNI-51, located in the central Australian tropical savanna. PAH molecular weights are tied to combustion temperature (i.e., low molecular weights form in lower temperature fires), and thus our record preserves evidence of both the timing and intensity of bushfire over the majority of the last millennium. Comparisons of burn scar satellite imagery with temporal changes in PAH abundances in recently deposited stalagmite suggest that airfall (smoke and ash) from fires within a 5 km radius is primarily responsible for transmitting PAHs to the land surface over the cave, a finding supported by our recent controlled burn and irrigation experiment. The rapid growth rate of KNI-51 stalagmites (1-2 mm yr-1), coupled with the extremely thin soils above the cave, appear to allow for transmission and preservation of multi-annual paleofire signals. To investigate the effects of external forcing on bushfire activity over the last millennium, we applied linear mixed-effect regression to the PAH data, and also included monsoon rainfall (using oxygen isotope ratios from the same stalagmites), annual surface air temperature (using output from the CESM-Last Millennium Ensemble), antecedent fire (using the same stalagmite PAH record), and timing with respect to the arrival of European pastoralists (EP) and their cattle in the 1880s. The model reveals significant differences prior to and following the arrival of EP. Most notably, prior to the arrival of EP, rainfall was significantly correlated with low and medium intensity fires, but not high intensity ones. After the arrival of EP, the correlation between rainfall and fire activity decreased markedly, and showed no statistically significant correlation to any fire intensity. Similarly, prior to the arrival of EP, antecedent fire activity (determined as the sum of PAH within the previous 5 years) was correlated with all levels of fire intensity, but after EP arrival, only high intensity fires are correlated with such antecedent burning. Our findings thus suggest that fire activity following the arrival of EP in the eastern Kimberley has been distinct from any other extended period of the last nine centuries. 
    more » « less