Abstract The physical processes that facilitate long‐distance translation of large‐volume gravity slides remain poorly understood. To better understand these processes and the controls on runout distance, we conducted an outcrop and microstructural characterization of the Sevier gravity slide across the former land surface and summarize findings of four key sites. The Sevier gravity slide is the oldest of three mega‐scale (>1,000 km2) collapse events of the Marysvale volcanic field (Utah, USA). Field observations of intense deformation, clastic dikes, pseudotachylyte, and consistency of kinematic indicators support the interpretation of rapid emplacement during a single event. Furthermore, clastic dikes and characteristics of the slip zone suggest emplacement involved mobilization and pressurized injection of basal material. Across the runout distance, we observe evidence for progressive slip delocalization along the slide base. This manifests as centimeter‐ to decimeter‐thick cataclastic basal zones and abundant clastic dikes in the north and tens of meters thick basal zones characterized by widespread deformation of both slide blocks and underlying rock near the southern distal end of the gravity slide. Superimposed on this transition are variations in basal zone characteristics and slide geometry arising from interactions between slide blocks during dynamic wear and deposition processes and pre‐existing topography of the former land surface. These observations are synthesized into a conceptual model in which the presence of highly pressurized fluids reduced the frictional resistance to sliding during the emplacement of the Sevier gravity slide, and basal zone evolution controlled the effectiveness of dynamic weakening mechanisms across the former land surface.
more »
« less
This content will become publicly available on June 1, 2026
The Growth and Collapse of a Volcanic Field: Detrital Zircon U/Pb Geochronology and Provenance of the Oligocene Bear Valley Formation, Southwest Utah, USA
The Bear Valley Formation (Fm.) is a distinctive eolian sandstone interbedded with thick volcanic rocks of the Marysvale volcanic field of southwest Utah, the southern part of which failed during eruptive activity along three mega-scale gravity slides. The formation is as thick as 300 m and extends over an area of >2,500 km2in the Black Mountains and Markagunt Plateau. The Bear Valley Fm. is composed of tuffaceous sandstone interbedded with tuff, conglomerate, and polymict volcanic mudflow breccias. The sandstone beds are lithic arenite and lithic wacke that occur as massive beds with large-scale cross bedding. The Bear Valley Fm. occurs in the upper plate of the Markagunt gravity slide and is in both the upper and lower plates of the Black Mountains gravity slide. We used laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to acquire U/Pb dates of detrital zircons (N = 3, n = 346) from the autochthonous Bear Valley Fm. at Kane Spring and Jako Wash in the Black Mountains and the allochthonous Bear Valley at Sandy Wash in the central Markagunt Plateau. All samples are dominated by Oligocene zircons with maximum likelihood ages for deposition ranging from 23.6 to 24.0 Ma. The western-most sample from Jako Wash also preserves a slightly older group of zircons, indicating derivation from either the underlying Wah Wah Springs Fm. or another unit erupted from the Indian Peak caldera complex to the west. Thus, the upper Bear Valley Fm. was deposited within ~400 kyr before the emplacement of the Markagunt gravity slide at 23 Ma, reflecting accelerated uplift of the northern Marysvale complex that ultimately resulted in collapse and slide emplacement.
more »
« less
- Award ID(s):
- 2412838
- PAR ID:
- 10614647
- Publisher / Repository:
- Society for Sedimentary Geology
- Date Published:
- Journal Name:
- The Sedimentary Record
- Volume:
- 23
- Issue:
- 1
- ISSN:
- 1543-8740
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. The Marysvale volcanic field in southwestern Utah hosts three large-volume gravity slides: the Sevier (SGS), the Markagunt (MGS), and the Black Mountains (BGS). The gravity slides are composed of lahar deposits, lava flows, and ash-flow tuffs erupted from former stratovolcanoes and other vents during the Oligocene and Miocene. The ash-flow tuffs are prime targets for dating to constrain the age of the gravity slides because some ash-flow tuffs are deformed within the slides, whereas others are undeformed and cap the slides. Furthermore, the gravity slides produced pseudotachylyte during slide motion, a direct indicator for the timing of each slide. This work provides new 40Ar/39Ar dates for several ash-flow tuffs and pseudotachylyte for the SGS, along with U/Pb zircon dates for one deformed tuff and alluvium near the slide plane. Results show that the slide was emplaced at 25.25 ± 0.05 Ma and was immediately followed by the eruption of the Antimony Tuff at 25.19 ± 0.02 Ma. The model presented here suggests that the intrusion of magma related to the Antimony Tuff acted as a triggering mechanism for the slide and that slide movement itself led to decompression melting and eruption of the Antimony Tuff. This sequence of events occurred on a geologically rapid timescale and may have been virtually instantaneous.more » « less
-
The Upper Cretaceous to Paleocene Yakutat Group contains a flysch unit and a mélange unit with an unknown source terrane. The provenance of detrital zircons may be the key to understanding the age of clastic units, their source terrane, and correlative rocks along the margin. Two samples were collected from remote and difficult to access areas in Glacier Bay National Park, and these samples can be compared to samples from Harlequin Lake, Russell Fiord, and Yakutat Bay to the north. We dated detrital zircons using standard LA-ICPMS methodology. A sample of Yakutat Group flysch (YGf) from the Grand Plateau Glacier is from quartzofeldspathic turbidites adjacent to the Grand Plateau pluton. It has an MDA of ~66 Ma (Maastrichtian-Paleocene), and the grain-age distribution is dominated by a broad mid-Cretaceous population with ages from ~91 to ~114 Ma, it also has a Jurassic component at ~166. A unique attribute of this sample is that 23% of the zircons are Precambrian with a bimodal population at ~1397 Ma and ~1702 Ma. A sample of sandstone from the Yakutat Group mélange (YGm) from Lituya Bay, was collected from an assemblage of dark lithic sandstones interbedded with basalt, and dark-gray bedded chert. This sample has an MDA of ~108 (Albian), and its grain-age distribution is dominated (88%)by Jurassic dates ranging from ~156 to ~188 Ma. Both samples can be correlated to similar dated units in the area in and around Yakutat Bay. The YGf sample is correlative to the primary zircon facies common to arkosic rocks in both the Yakutat Group flysch and mélange, which we refer to as the Russell zircon facies, with an MDA range from 61-72 Ma, and distinctive Precambrian populations. The YGm sample is more complicated, but it appears to belong to the Shelter Cove zircon facies, dominated by mid-Cretaceous lithic sandstones that occur only in the mélange. The Yakutat terrane has been translated along the margin of the Cordillera, and candidate correlative rocks are to the south. We are intrigued that similar facies with similar grain-age distributions occur in the Western Mélange Belt in the North Cascades foothills in WA. We evaluate the correlation and connection between the Yakutat and the WMB and post Paleocene translation of part of this once contiguous unit.more » « less
-
null (Ed.)Abstract The provocative hypothesis that the Shinumo Sandstone in the depths of Grand Canyon was the source for clasts of orthoquartzite in conglomerate of the Sespe Formation of coastal California, if verified, would indicate that a major river system flowed southwest from the Colorado Plateau to the Pacific Ocean prior to opening of the Gulf of California, and would imply that Grand Canyon had been carved to within a few hundred meters of its modern depth at the time of this drainage connection. The proposed Eocene Shinumo-Sespe connection, however, is not supported by detrital zircon nor paleomagnetic-inclination data and is refuted by thermochronology that shows that the Shinumo Sandstone of eastern Grand Canyon was >60 °C (∼1.8 km deep) and hence not incised at this time. A proposed 20 Ma (Miocene) Shinumo-Sespe drainage connection based on clasts in the Sespe Formation is also refuted. We point out numerous caveats and non-unique interpretations of paleomagnetic data from clasts. Further, our detrital zircon analysis requires diverse sources for Sespe clasts, with better statistical matches for the four “most-Shinumo-like” Sespe clasts with quartzites of the Big Bear Group and Ontario Ridge metasedimentary succession of the Transverse Ranges, Horse Thief Springs Formation from Death Valley, and Troy Quartzite of central Arizona. Diverse thermochronologic and geologic data also refute a Miocene river pathway through western Grand Canyon and Grand Wash trough. Thus, Sespe clasts do not require a drainage connection from Grand Canyon or the Colorado Plateau and provide no constraints for the history of carving of Grand Canyon. Instead, abundant evidence refutes the “old” (70–17 Ma) Grand Canyon models and supports a <6 Ma Grand Canyon.more » « less
-
Abstract Tandem in situ and isotope dilution U-Pb analysis of zircons from pyroclastic volcanic rocks and both glacial and non-glacial sedimentary strata of the Pocatello Formation (Idaho, northwestern USA) provides new age constraints on Cryogenian glaciation in the North American Cordillera. Two dacitic tuffs sampled within glacigenic strata of the lower diamictite interval of the Scout Mountain Member yield high-precision chemical abrasion isotope dilution U-Pb zircon eruption and depositional ages of 696.43 ± 0.21 and 695.17 ± 0.20 Ma. When supplemented by a new high-precision detrital zircon maximum depositional age of ≤670 Ma for shoreface and offshore sandstones unconformably overlying the lower diamictite, these data are consistent with correlation of the lower diamictite to the early Cryogenian (ca. 717–660 Ma) Sturtian glaciation. These 670–675 Ma zircons persist in beds above the upper diamictite and cap dolostone units, up to and including a purported “reworked fallout tuff,” which we instead conclude provides only a maximum depositional age of ≤673 Ma from epiclastic volcanic detritus. Rare detrital zircons as young as 658 Ma provide a maximum depositional age for the upper diamictite and overlying cap dolostone units. This new geochronological framework supports litho- and chemostratigraphic correlations of the lower and upper diamictite intervals of the Scout Mountain Member of the Pocatello Formation with the Sturtian (716–660 Ma) and Marinoan (≤650–635 Ma) low-latitude glaciations, respectively. The Pocatello Formation thus contains a more complete record of Cryogenian glaciations than previously postulated.more » « less
An official website of the United States government
