skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 29, 2026

Title: Contrasting drought sensitivity of Eurasian and North American grasslands
Extreme droughts generally decrease productivity in grassland ecosystems1,2,3 with negative consequences for nature’s contribution to people4,5,6,7. The extent to which this negative effect varies among grassland types and over time in response to multi-year extreme drought remains unclear. Here, using a coordinated distributed experiment that simulated four years of growing-season drought (around 66% rainfall reduction), we compared drought sensitivity within and among six representative grasslands spanning broad precipitation gradients in each of Eurasia and North America—two of the Northern Hemisphere’s largest grass-dominated regions. Aboveground plant production declined substantially with drought in the Eurasian grasslands and the effects accumulated over time, while the declines were less severe and more muted over time in the North American grasslands. Drought effects on species richness shifted from positive to negative in Eurasia, but from negative to positive in North America over time. The differing responses of plant production in these grasslands were accompanied by less common (subordinate) plant species declining in Eurasian grasslands but increasing in North American grasslands. Our findings demonstrate the high production sensitivity of Eurasian compared with North American grasslands to extreme drought (43.6% versus 25.2% reduction), and the key role of subordinate species in determining impacts of extreme drought on grassland productivity.  more » « less
Award ID(s):
1655499 2423861 2425290
PAR ID:
10614677
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Nature
Date Published:
Journal Name:
Nature
Volume:
639
Issue:
8053
ISSN:
0028-0836
Page Range / eLocation ID:
114 to 118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Plant traits can be helpful for understanding grassland ecosystem responses to climate extremes, such as severe drought. However, intercontinental comparisons of how drought affects plant functional traits and ecosystem functioning are rare. The Extreme Drought in Grasslands experiment (EDGE) was established across the major grassland types in East Asia and North America (six sites on each continent) to measure variability in grassland ecosystem sensitivity to extreme, prolonged drought. At all sites, we quantified community‐weighted mean functional composition and functional diversity of two leaf economic traits, specific leaf area and leaf nitrogen content, in response to drought. We found that experimental drought significantly increased community‐weighted means of specific leaf area and leaf nitrogen content at all North American sites and at the wetter East Asian sites, but drought decreased community‐weighted means of these traits at moderate to dry East Asian sites. Drought significantly decreased functional richness but increased functional evenness and dispersion at most East Asian and North American sites. Ecosystem drought sensitivity (percentage reduction in aboveground net primary productivity) positively correlated with community‐weighted means of specific leaf area and leaf nitrogen content and negatively correlated with functional diversity (i.e., richness) on an intercontinental scale, but results differed within regions. These findings highlight both broad generalities but also unique responses to drought of community‐weighted trait means as well as their functional diversity across grassland ecosystems. 
    more » « less
  2. ABSTRACT Extreme droughts are intensifying, yet their impact on temporal variability of grassland functioning and its drivers remains poorly understood. We imposed a 6‐year extreme drought in two semiarid grasslands to explore how drought influences the temporal variability of ANPP and identify potential stabilising mechanisms. Drought decreased ANPP while increasing its temporal variability across grasslands. In the absence of drought, ANPP variability was strongly driven by the dominant plant species (i.e., mass‐ratio effects), as captured by community‐weighted traits and species stability. However, drought decreased the dominance of perennial grasses, providing opportunities for subordinate species to alter the stability of productivity through compensatory dynamics. Specifically, under drought, species asynchrony emerged as a more important correlate of ANPP variability than community‐weighted traits or species stability. Our findings suggest that in grasslands, prolonged, extreme droughts may decrease the relative contribution of mass‐ratio effects versus compensatory dynamics to productivity stability by reducing the influence of dominant species. 
    more » « less
  3. Plant-associated fungi can ameliorate abiotic stress in their hosts, and changes in these fungal communities can alter plant productivity, species interactions, community structure and ecosystem processes. We investigated the response of root-associated fungi to experimental drought (66% reduction in growing season precipitation) across six North American grassland ecosystem types to determine how extreme drought alters root-associated fungi, and understand what abiotic factors influence root fungal community composition across grassland ecosystems. Next generation sequencing of the fungal ITS2 region demonstrated that drought primarily re-ordered fungal species’ relative abundances within host plant species, with different fungal responses depending on host identity. Grass species that declined more under drought trended toward less community re-ordering of root fungi than species less sensitive to drought. Host identity and grassland ecosystem type defined the magnitude of drought effects on community composition, diversity, and root colonization, and the most important factor affecting fungal composition was plant species identity. 
    more » « less
  4. ABSTRACT Ecological stability plays a crucial role in determining the sustainability of ecosystem functioning and nature's contribution to people. Although the disruptive effects of extreme drought on ecosystem structure and functions are widely recognized, their effect on the stability of above‐ and belowground productivity remains understudied. We assessed the effects of drought on ecosystem stability using a 3‐year drought experiment established in six Eurasian steppe grasslands. The treatments imposed included ambient precipitation, chronic drought (66% reduction in precipitation throughout the growing season), and intense drought (complete exclusion of precipitation for two months during the growing season). We found that drought, irrespective of how it was imposed, reduced the stability of aboveground net primary productivity (ANPP) but had little impact on belowground net primary productivity (BNPP) stability. Reduced ANPP stability under drought was primarily attributed to changes in subordinate species stability, with mean annual precipitation (MAP) and its variability, historical drought frequency, and the aridity index (AI) also influencing responses to extreme drought. In contrast, BNPP stability was not related to any community factor investigated, but it was influenced by MAP variability and AI. Our findings that above‐ and belowground productivity stability in grasslands are differentially sensitive to multi‐year extreme drought under both common (MAP and AI) as well as unique drivers (plant community changes) highlight the complexity of predicting carbon cycle dynamics as hydrological extremes become more severe. 
    more » « less
  5. Abstract Dominant species play a key role in plant communities, influencing the abundance and richness of subordinate species through competitive and facilitative interactions. However, generalizations about the effects of dominant plant species in grasslands can be difficult due to the many differences among communities, such as abiotic conditions and regional species pools. To overcome this issue, we conducted a dominant species removal experiment in two semiarid grassland communities at the Sevilleta National Wildlife Refuge in central New Mexico. These communities had different dominant species but similar abiotic conditions and regional species pools. We studied the effects of removing dominant species on community composition, diversity, and aboveground net primary production (ANPP) over a 23‐year period. Our results showed that dominant grasses suppressed both richness and abundance of subordinate species. In the Chihuahuan Desert grassland, the loss ofBouteloua eriopodawas only partially compensated for by subordinate species, while in the Great Plains grassland, the loss ofBouteloua graciliswas fully compensated for after 16 years. Despite increased species richness, removing dominant species reduced ANPP and resulted in a negative relationship between species richness and ANPP in both grasslands. These results have important implications for ecosystem management and conservation, highlighting the potential impact of losing dominant species on subordinate species and community dynamics. 
    more » « less