skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Causally Sound Priors for Binary Experiments
We introduce the BREASE framework for the Bayesian analysis of randomized controlled trials with a binary treatment and a binary outcome. Approaching the problem from a causal inference perspective, we propose parameterizing the likelihood in terms of the baseline risk, efficacy, and side effects of the treatment, along with a flexible, yet intuitive and tractable jointly independent beta prior distribution on these parameters, which we show to be a generalization of the Dirichlet prior for the joint distribution of potential outcomes. Our approach has a number of desirable characteristics when compared to current mainstream alternatives: (i) it naturally induces prior dependence between expected outcomes in the treatment and control groups; (ii) as the baseline risk, efficacy and side effects are quantities inherently familiar to clinicians, the hyperparameters of the prior are directly interpretable, thus facilitating the elicitation of prior knowledge and sensitivity analysis; and (iii) it admits analytical formulae for the marginal likelihood, Bayes factor, and other posterior quantities,as well as an exact posterior sampling algorithm and an accurate and fast data-augmented Gibbs sampler in cases where traditional MCMC fails. Empirical examples demonstrate the utility of our methods for estimation, hypothesis testing, and sensitivity analysis of treatment effects.  more » « less
Award ID(s):
2417955
PAR ID:
10614778
Author(s) / Creator(s):
;
Publisher / Repository:
International Society for Bayesian Analysis
Date Published:
Journal Name:
Bayesian Analysis
Volume:
-1
Issue:
-1
ISSN:
1936-0975
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Like many other clinical and economic studies, each subject of our motivating transplant study is at risk of recurrent events of non-fatal tissue rejections as well as the terminating event of death due to total graft rejection. For such studies, our model and associated Bayesian analysis aim for some practical advantages over competing methods. Our semiparametric latent-class-based joint model has coherent interpretation of the covariate (including race and gender) effects on all functions and model quantities that are relevant for understanding the effects of covariates on future event trajectories. Our fully Bayesian method for estimation and prediction uses a complete specification of the prior process of the baseline functions. We also derive a practical and theoretically justifiable partial likelihood-based semiparametric Bayesian approach to deal with the analysis when there is a lack of prior information about baseline functions. Our model and method can accommodate fixed as well as time-varying covariates. Our Markov Chain Monte Carlo tools for both Bayesian methods are implementable via publicly available software. Our Bayesian analysis of transplant study and simulation study demonstrate practical advantages and improved performance of our approach. 
    more » « less
  2. We study critical systems that allocate scarce resources to satisfy basic needs, such as homeless services that provide housing. These systems often support communities disproportionately affected by systemic racial, gender, or other injustices, so it is crucial to design these systems with fairness considerations in mind. To address this problem, we propose a framework for evaluating fairness in contextual resource allocation systems that is inspired by fairness metrics in machine learning. This framework can be applied to evaluate the fairness properties of a historical policy, as well as to impose constraints in the design of new (counterfactual) allocation policies. Our work culminates with a set of incompatibility results that investigate the interplay between the different fairness metrics we propose. Notably, we demonstrate that: 1) fairness in allocation and fairness in outcomes are usually incompatible; 2) policies that prioritize based on a vulnerability score will usually result in unequal outcomes across groups, even if the score is perfectly calibrated; 3) policies using contextual information beyond what is needed to characterize baseline risk and treatment effects can be fairer in their outcomes than those using just baseline risk and treatment effects; and 4) policies using group status in addition to baseline risk and treatment effects are as fair as possible given all available information. Our framework can help guide the discussion among stakeholders in deciding which fairness metrics to impose when allocating scarce resources. 
    more » « less
  3. The formulation of Bayesian inverse problems involves choosing prior distributions; choices that seem equally reason-able may lead to significantly different conclusions. We develop a computational approach to understand the impact of the hyperparameters defining the prior on the posterior statistics of the quantities of interest. Our approach relies on global sensitivity analysis (GSA) of Bayesian inverse problems with respect to the prior hyperparameters. This, however, is a challenging problem-a naive double loop sampling approach would require running a prohibitive number of Markov chain Monte Carlo (MCMC) sampling procedures. The present work takes a foundational step in making such a sensitivity analysis practical by combining efficient surrogate models and a tailored importance sampling approach. In particular, we can perform accurate GSA of posterior statistics of quantities of interest with respect to prior hyperparameters without the need to repeat MCMC runs. We demonstrate the effectiveness of the approach on a simple Bayesian linear inverse problem and a nonlinear inverse problem governed by an epidemiological model. 
    more » « less
  4. We propose a novel modular inference approach combining two different generative models — generative adversarial networks (GAN) and normalizing flows — to approximate the posterior distribution of physics-based Bayesian inverse problems framed in high-dimensional ambient spaces. We dub the proposed framework GAN-Flow. The proposed method leverages the intrinsic dimension reduction and superior sample generation capabilities of GANs to define a low-dimensional data-driven prior distribution. Once a trained GAN-prior is available, the inverse problem is solved entirely in the latent space of the GAN using variational Bayesian inference with normalizing flow-based variational distribution, which approximates low-dimensional posterior distribution by transforming realizations from the low-dimensional latent prior (Gaussian) to corresponding realizations of a low-dimensional variational posterior distribution. The trained GAN generator then maps realizations from this approximate posterior distribution in the latent space back to the high-dimensional ambient space. We also propose a two-stage training strategy for GAN-Flow wherein we train the two generative models sequentially. Thereafter, GAN-Flow can estimate the statistics of posterior-predictive quantities of interest at virtually no additional computational cost. The synergy between the two types of generative models allows us to overcome many challenges associated with the application of Bayesian inference to large-scale inverse problems, chief among which are describing an informative prior and sampling from the high-dimensional posterior. GAN-Flow does not involve Markov chain Monte Carlo simulation, making it particularly suitable for solving large-scale inverse problems. We demonstrate the efficacy and flexibility of GAN-Flow on various physics-based inverse problems of varying ambient dimensionality and prior knowledge using different types of GANs and normalizing flows. Notably, one of the applications we consider involves a 65,536-dimensional inverse problem of phase retrieval wherein an object is reconstructed from sparse noisy measurements of the magnitude of its Fourier transform. 
    more » « less
  5. Due to the high dimensional integration over latent variables, computing marginal likelihood and posterior distributions for the parameters of a general hierarchical model is a difficult task. The Markov Chain Monte Carlo (MCMC) algorithms are commonly used to approximate the posterior distributions. These algorithms, though effective, are computationally intensive and can be slow for large, complex models. As an alternative to the MCMC approach, the Laplace approximation (LA) has been successfully used to obtain fast and accurate approximations to the posterior mean and other derived quantities related to the posterior distribution. In the last couple of decades, LA has also been used to approximate the marginal likelihood function and the posterior distribution. In this paper, we show that the bias in the Laplace approximation to the marginal likelihood has substantial practical consequences. 
    more » « less