Dryland environments are experiencing shifting ecogeomorphic patterns due to climatic changes and anthropogenic activities, resulting in a shift from grasslands to shrub-dominated landscapes. This dissertation investigates the effects from increasingly variable monsoonal precipitation and ecogeomorphic connectivity on perennial grass growth, litter distribution, and soil organic matter in drylands, with a focus on grass-shrub ecotones. Field experiments were conducted in the Chihuahuan Desert at the Jornada Basin Long-Term Ecological Research (LTER) site using a precipitation manipulation system and connectivity modifiers (ConMods) to assess their effects on plant productivity, recruitment, and soil nutrient distribution. Results show that reducing connectivity, combined with increased monsoonal precipitation, can enhance perennial grass productivity and recruitment, and affect the distribution of soil organic matter and non-photosynthetic vegetation. These findings contribute to our understanding of how aeolian processes and shifting precipitation regimes will shape vegetation patterns and soil properties in dryland environments under future climate scenarios. This research provides insights into potential mitigation strategies for combating shrub encroachment and promoting the sustainability of dryland ecosystems.
more »
« less
The complex relationship between precipitation and productivity in drylands
Abstract Drylands provide multiple essential services to human society, and dryland vegetation is one of the foundations of these services. There is a paradox, however, in the vegetation productivity–precipitation relationship in drylands. Although water is the most limiting resource in these systems, a strong relationship between precipitation and productivity does not always occur. Such a paradox affects our understanding of dryland vegetation dynamics and hinders our capacity to predict dryland vegetation responses under future climates. In this perspective, we examine the possible causes of the dryland precipitation–productivity paradox. We argue that the underlying reasons depend on the location and scale of the study. Sometimes multiple factors may interact, resulting in a less significant relationship between vegetation growth and water availability. This means that when we observe a poor correlation between vegetation growth and water availability, there are potentially missing sources of water input or a lack of consideration of other important processes. The paradox could also be related to the inaccurate measurement of vegetation productivity and water availability indicators. Incorporating these complexities into predictive models will help us better understand the complex relationship between water availability and dryland ecosystem processes and improve our ability to predict how these ecosystems will respond to the multiple facets of climate change.
more »
« less
- PAR ID:
- 10614786
- Publisher / Repository:
- Cambridge University Press
- Date Published:
- Journal Name:
- Cambridge Prisms: Drylands
- Volume:
- 1
- ISSN:
- 2976-5293
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Variability of the terrestrial global carbon sink is largely determined by the response of dryland productivity to annual precipitation. Despite extensive disturbance in drylands, how disturbance alters productivity-precipitation relationships remains poorly understood. Using remote-sensing to pair more than 5600 km of natural gas pipeline corridors with neighboring undisturbed areas in North American drylands, we found that disturbance reduced average annual production 6 to 29% and caused up to a fivefold increase in the sensitivity of net primary productivity (NPP) to interannual variation in precipitation. Disturbance impacts were larger and longer-lasting at locations with higher precipitation (>450 mm mean annual precipitation). Disturbance effects on NPP dynamics were mostly explained by shifts from woody to herbaceous vegetation. Severe disturbance will amplify effects of increasing precipitation variability on NPP in drylands.more » « less
-
Drylands cover ca. 40% of the land surface and are hypothesised to play a major role in the global carbon cycle, controlling both long-term trends and interannual variation. These insights originate from land surface models (LSMs) that have not been extensively calibrated and evaluated for water-limited ecosystems. We need to learn more about dryland carbon dynamics, particularly as the transitory response and rapid turnover rates of semi-arid systems may limit their function as a carbon sink over multi-decadal scales. We quantified aboveground biomass carbon (AGC; inferred from SMOS L-band vegetation optical depth) and gross primary productivity (GPP; from PML-v2 inferred from MODIS observations) and tested their spatial and temporal correspondence with estimates from the TRENDY ensemble of LSMs. We found strong correspondence in GPP between LSMs and PML-v2 both in spatial patterns (Pearson’s r = 0.9 for TRENDY-mean) and in inter-annual variability, but not in trends. Conversely, for AGC we found lesser correspondence in space (Pearson’s r = 0.75 for TRENDY-mean, strong biases for individual models) and in the magnitude of inter-annual variability compared to satellite retrievals. These disagreements likely arise from limited representation of ecosystem responses to plant water availability, fire, and photodegradation that drive dryland carbon dynamics. We assessed inter-model agreement and drivers of long-term change in carbon stocks over centennial timescales. This analysis suggested that the simulated trend of increasing carbon stocks in drylands is in soils and primarily driven by increased productivity due to CO 2 enrichment. However, there is limited empirical evidence of this 50-year sink in dryland soils. Our findings highlight important uncertainties in simulations of dryland ecosystems by current LSMs, suggesting a need for continued model refinements and for greater caution when interpreting LSM estimates with regards to current and future carbon dynamics in drylands and by extension the global carbon cycle.more » « less
-
Abstract In dryland ecosystems, vegetation within different plant functional groups exhibits distinct seasonal phenologies that are affected by the prevailing hydroclimatic forcing. The seasonal variability of precipitation, atmospheric evaporative demand, and streamflow influences root-zone water availability to plants in water-limited environments. Increasing interannual variations in climate forcing of the local water balance and uncertainty regarding climate change projections have raised the potential for phenological shifts and changes to vegetation dynamics. This poses significant risks to plant functional types across large areas, especially in drylands and within riparian ecosystems. Due to the complex interactions between climate, water availability, and seasonal plant water use, the timing and amplitude of phenological responses to specific hydroclimate forcing cannot be determined a priori , thus limiting efforts to dynamically predict vegetation greenness under future climate change. Here, we analyze two decades (1994–2021) of remote sensing data (soil adjusted vegetation index (SAVI)) as well as contemporaneous hydroclimate data (precipitation, potential evapotranspiration, depth to groundwater, and air temperature), to identify and quantify the key hydroclimatic controls on the timing and amplitude of seasonal greenness. We focus on key phenological events across four different plant functional groups occupying distinct locations and rooting depths in dryland SE Arizona: semi-arid grasses and shrubs, xeric riparian terrace and hydric riparian floodplain trees. We find that key phenological events such as spring and summer greenness peaks in grass and shrubs are strongly driven by contributions from antecedent spring and monsoonal precipitation, respectively. Meanwhile seasonal canopy greenness in floodplain and terrace vegetation showed strong response to groundwater depth as well as antecedent available precipitation (aaP = P − PET) throughout reaches of perennial and intermediate streamflow permanence. The timings of spring green-up and autumn senescence were driven by seasonal changes in air temperature for all plant functional groups. Based on these findings, we develop and test a simple, empirical phenology model, that predicts the timing and amplitude of greenness based on hydroclimate forcing. We demonstrate the feasibility of the model by exploring simple, plausible climate change scenarios, which may inform our understanding of phenological shifts in dryland plant communities and may ultimately improve our predictive capability of investigating and predicting climate-phenology interactions in the future.more » « less
-
Abstract Dryland productivity is highly sensitive to precipitation variability, and models predict that rainfall variability will increase in the future. Numerous studies have documented the relationship between productivity and precipitation, but most focus on aboveground production (ANPP), while the effects on belowground production (BNPP) remain poorly understood. Furthermore, previous research suggests that ANPP and BNPP are uncoupled within ecosystems, but the degree to which rainfall variability affects the interplay between aboveground and belowground production is unknown. We conducted a long‐term rainfall manipulation experiment in Chihuahuan Desert grassland to investigate how the size and frequency of growing season rain events affected BNPP and its relationship to ANPP. Experimental plots received either 12 small‐frequent rain events or 3 large‐infrequent events during the monsoon season for a total of 60 mm of added rainfall per treatment per year. All plots, including three controls, received ambient rainfall throughout the year. Total BNPP ranged from a low of 94.7 ± 38.2 g m2year−1under ambient conditions to a high of 183.7 ± 44.6 g m2year−1under the small‐frequent rainfall treatment. Total BNPP was highest under small‐frequent rain events, and there was no difference in BNPP between 0–15 and 15–30 cm soil depths in either rainfall treatment. ANPP and BNPP were uncorrelated within rainfall treatments, but weakly positively correlated across all plots and years. Our results contribute to a growing body of research on the importance of small rain events in drylands and provide further evidence regarding the weak coupling between aboveground and belowground processes.more » « less
An official website of the United States government

