Bacterial infection has traditionally been treated with antibiotics, but their overuse is leading to the development of antibiotic resistance. This may be mitigated by alternative approaches to prevent or treat bacterial infections without utilization of antibiotics. Among the alternatives is the use of photo-responsive antimicrobial nanoparticles and/or nanocomposites, which present unique properties activated by light. In this study, we explored the combined use of titanium oxide and polydopamine to create nanoparticles with photocatalytic and photothermal antibacterial properties triggered by visible or near-infrared light. Furthermore, as a proof-of-concept, these photo-responsive nanoparticles were combined with mussel-inspired catechol-modified hyaluronic acid hydrogels to form novel light-driven antibacterial nanocomposites. The materials were challenged with models of Gram-negative and Gram-positive bacteria. For visible light, the average percentage killed (PK) was 94.6 for E. coli and 92.3 for S. aureus. For near-infrared light, PK for E. coli reported 52.8 and 99.2 for S. aureus. These results confirm the exciting potential of these nanocomposites to prevent the development of antibiotic resistance and also to open the door for further studies to optimize their composition in order to increase their bactericidal efficacy for biomedical applications.
more »
« less
This content will become publicly available on February 17, 2026
Photothermal–Photocatalytic Ternary Heterostructure for Solar Light-Driven Highly Efficient Degradation of Antimicrobial Agents and Inactivation of Superbugs
A significant proportion of antimicrobial agents, such as different antibiotics discharged into the environment via human and animal waste, poses significant problems for ecological balance and human health. Moreover, widespread overuse and misuse of antibiotics have led to antibiotic-resistant bacteria (superbugs), which is one of the biggest global health problems in the 21st century. Since the utilization of solar energy, which is an abundant and natural resource for the photocatalytic system, we report the design of a photothermal–photocatalytic dual-functional light absorber-based ternary heterostructure using plasmonic gold nanoparticle (AuNP)-anchored WO3 nanoplatelet (WO3 NPL)-decorated reduced graphene oxide (r-GO) (AuNP/WO3 NPL/r-GO), which exhibits strong absorption between 400 and 900 nm regions and has the capability for the sunlight-driven 100% degradation of doxycycline antibiotics. Herein, we show that due to the excellent photothermal performance of AuNP and r-GO in the heterostructure, the local temperature increased under 785 NIR nm light irradiation, which boosted the photocatalytic degradation reaction kinetics for doxycycline antibiotics via enhancing the transfer of “hot carriers” and the formation of reactive oxygen species (ROS). Furthermore, experimental data indicate that by integrating photothermal–photocatalytic materials, sunlight can be used for 100% doxycycline antibiotic degradation after 80 min of light irradiation. Moreover, we demonstrate that the ternary heterostructure can be used for sunlight-based 100% inactivation of carbapenem-resistant Enterobacteriaceae Escherichia coli (CRE E. coli) and methicillin-resistant Staphylococcus aureus (MRSA) superbugs by just exposing them to light for 60 min. This study sheds light on the construction of photothermally assisted photocatalytic ternary heterostructures for high-efficiency sunlight-driven degradation of antibiotics and superbugs.
more »
« less
- PAR ID:
- 10614812
- Publisher / Repository:
- acs.org
- Date Published:
- Journal Name:
- ACS Applied Bio Materials
- Volume:
- 8
- Issue:
- 2
- ISSN:
- 2576-6422
- Page Range / eLocation ID:
- 1732 to 1744
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The ineffective removal of antibiotics from the aquatic environment has raised serious problems, including chronic toxicity and antibiotic resistance. Among the numerous strategies, photocatalytic degradation appears to be one of the promising methods to remove antibiotics. Semiconductors are the most widely used photocatalysts, whereas, their efficiencies still suffer from limited light absorption and poor charge separation. Given their exceptional properties, including a superior surface area and massive active sites, MOFs are excellent candidates for the formation of hierarchical nanostructures with semiconductors to address the above issues. In this study, highly-oriented one-dimensional (1D) MIL-100(Fe)/TiO 2 nanoarrays were developed as photocatalysts for the first time (MIL = Materials Institute Lavoisier). The 1D structured TiO 2 nanoarrays not only enable the direct and enhanced charge transport, but also permit easy recycling. With the in situ growth of MIL-100(Fe) on the TiO 2 nanoarrays, the composite exhibits enhanced light absorption, electron/hole separation, and accessibility of active sites. As a result, up to 90.79% photodegradation efficiency of tetracycline, a representative antibiotic, by the MIL-100(Fe)/TiO 2 composite nanoarrays was achieved, which is much higher than that of pristine TiO 2 nanoarrays (35.22%). It is also worth mentioning that the composite nanoarrays demonstrate high stability and still exhibit high efficiency twice that of the pristine TiO 2 nanoarrays even in the 5th run. This study offers a new strategy for the degradation of antibiotics by using 1D MOF-based nanocomposite nanoarrays.more » « less
-
The rapid discharge of antibiotic pollutants from pharmaceutical industries into natural water sources poses a significant threat to human health and the environment. Conventional water treatment methods often fail to effectively remove these contaminants, leading to a pressing need for eco-friendly degradation approaches. This study focused on synthesizing pure and iron-doped zinc sulfide (ZnS) nanoparticles using a microwave-assisted technique in aqueous solution to evaluate their photocatalytic efficiency in degrading the antibiotic cephalexin. High-resolution transmission electron microscopy (TEM) characterized the synthesized nanoparticles, revealing crystalline structures approximately 5 nm in size. The photocatalytic capacity was assessed using a spectrophotometric method, demonstrating that both pure and iron-doped ZnS nanostructures exhibit higher efficiency in degrading cephalexin under UV irradiation. These findings underscore the potential of ZnS nanostructures for photocatalytic applications in environmental remediation, particularly in degrading resistant antibiotic pollutants, highlighting their role in addressing organic pollution in water sources.more » « less
-
This study investigates the synergistic properties of 2D/1D ReS2-decorated LaFeO3 nanohybrids, presenting a unique approach to photocatalytic dye degradation. Through facile hydrothermal synthesis, we fabricated these nanohybrids with varying ReS2 loadings. Notably, the 5 wt% ReS2-LaFeO3 nanohybrid exhibited highly efficient visible-light-driven photocatalytic degradation of Congo red (CR) dye, achieving 82% degradation within 180 min. This enhanced performance can be attributed to synergistic effects arising from the unique 2D/1D architecture and the modified charge-transfer properties within the 2D/1D ReS2-LaFeO3 heterostructure. These findings demonstrate the potential of these multifunctional nanohybrids for applications in environmental remediation.more » « less
-
Biofilm-related infections are associated with high mortality and morbidity combined with increased treatment costs. Traditional antibiotics are becoming less effective due to the emergence of drug-resistant bacterial strains. The need to treat biofilms on medical implants is particularly acute, and one persistent challenge is selectively directing nanoparticles to the biofilm site. Here, we present a protein-based functionalization strategy that targets the extracellular matrix of biofilms. The engineered protein combines the Staphylococcus epidermidis autolysin R2ab domain with a gold-binding GB3 domain, directing nanoparticles specifically to bacterial cell wall components (lipoteichoic acid and wall teichoic acid) that are absent in mammalian tissues. This fusion protein is applied to a gold nanoparticle (AuNP) core, along with elastin-like polypeptides (ELPs), which generate a robust photothermal response. The engineered particles exhibit exceptional biocompatibility, including low protein corona formation, minimal macrophage uptake, and hemocompatibility, while maintaining selective biofilm targeting. The photothermal conversion can be modulated by changing the ELP transition temperature, and the functionalized AuNPs strongly interact with biofilms under static and flow conditions without significantly binding to serum-coated surfaces. Near-infrared laser irradiation resulted in a 10,000-fold improvement in killing efficiency compared to untreated controls (p < 0.0001). The targeting strategy utilized here represents a versatile approach to targeting drug-resistant infections and could be readily expanded to other bacterial pathogens and anti-biofilm nanoparticle platforms.more » « less
An official website of the United States government
