skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: Engineering Synergistic 2D/1D ReS2-LaFeO3 Nanohybrids for Enhanced Visible-Light-Driven Photocatalytic Performance
This study investigates the synergistic properties of 2D/1D ReS2-decorated LaFeO3 nanohybrids, presenting a unique approach to photocatalytic dye degradation. Through facile hydrothermal synthesis, we fabricated these nanohybrids with varying ReS2 loadings. Notably, the 5 wt% ReS2-LaFeO3 nanohybrid exhibited highly efficient visible-light-driven photocatalytic degradation of Congo red (CR) dye, achieving 82% degradation within 180 min. This enhanced performance can be attributed to synergistic effects arising from the unique 2D/1D architecture and the modified charge-transfer properties within the 2D/1D ReS2-LaFeO3 heterostructure. These findings demonstrate the potential of these multifunctional nanohybrids for applications in environmental remediation.  more » « less
Award ID(s):
2122044
PAR ID:
10582789
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Catalysts
Volume:
15
Issue:
3
ISSN:
2073-4344
Page Range / eLocation ID:
224
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The present work reports the synthesis of cobalt ferrite and its nanohybrids with polythiophene (PTh) in the weight ratios of 10% and 20%. The ferrite and its nanohybrids were characterized using thermogravimetric analysis (TGA), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy coupled with elemental mapping (Fe-SEM) to confirm the morphology as well as the structure of the synthesized nanohybrids. The nanohybrids were tested for their photocatalytic activity upon modification of PTh against Alizarin Yellow (AY), Congo Red (CR) and Brilliant Blue (BB). Almost 100% degradation was achieved in 30 min using 50 mg of the photocatalyst. The effect of catalyst concentration and dye concentration was also investigated to explore optimum concentration of the photocatalyst required for rapid degradation of the dye. The generation of radicals responsible for degradation was analyzed by radical scavenging experiments and a probable mechanism of degradation was proposed. 
    more » « less
  2. Photocatalysis, mainly using TiO2 as a catalyst, has emerged as a promising method to address the issue of wastewater treatment. This study explores the enhanced photocatalytic activity of TiO2 through the introduction of reduced graphene oxide (rGO) and cadmium sulfide (CdS) as selective metal dopants. The incorporation of rGO and CdS into the TiO2 lattice aims to optimize its photocatalytic properties, including bandgap engineering, charge carrier separation, and surface reactivity. The unique combination of CdS and rGO with TiO2 is expected to boost degradation efficiency and reduce the reliance on expensive and potentially harmful sensitizers. This experimental investigation involves the synthesis and characterization of TiO2-based photocatalysts. The photocatalytic degradation of methyl orange (MO) and methylene blue (MB) was assessed under controlled laboratory conditions, studying the influence of metal dopants on degradation kinetics and degradation efficiency. Furthermore, the synthesized photocatalyst is characterized by advanced techniques, including BET, SEM, TEM, XRD, and XPS analyses. The degraded samples were analyzed by UV-Vis spectroscopy. Insights into the photoexcitation and charge transfer processes shed light on the role of metal dopants in enhancing photocatalytic performance. The results demonstrate the potential of a TiO2-rGO-CdS-based photocatalyst in which 100% degradation was achieved within four hours for MO and six hours for MB, confirming efficient azo dye degradation. The findings contribute to understanding the fundamental principles underlying the photocatalytic process and provide valuable guidance for designing and optimizing advanced photocatalytic systems. Ultimately, this research contributes to the development of sustainable and effective technologies for removing azo dyes from various wastewaters, promoting environmental preservation and human well-being. 
    more » « less
  3. Nanohybrids represent a larger variety of functional materials consisting of one or more types of low‐dimensional semiconductor nanostructures, such as quantum dots, nanowires, nanotubes, 2D atomic materials (graphene, transition‐metal dichalcogenides, etc.) interfaced with one another, and/or with conventional material matrices (bulks, films, polymers, etc.). Heterojunction interfaces are characteristic in nanohybrids and play a critical role facilitating synergistic coupling of constituent materials of different functionalities, resulting in excellent electronic, optoelectronic, and mechanical properties. Therefore, nanohybrids provide fresh opportunities for designs of optoelectronic devices of extraordinary performance in addition to the benefits of low cost, large abundance, flexibility, and light weight. Herein, some recent achievements in exploiting new optoelectronic nanohybrids and understanding the underlying physics toward high‐performance optoelectronic nanohybrids that are competitive in commercialization of various optoelectronic devices are highlighted. Using nanohybrid photodetectors as an example, the importance in controlling the heterojunction interfaces and multiscale controlling of optoelectronic process of light absorption, exciton dissociation, photocarrier transfer, and transport from atomic to device scales and how this control impacts the photodetector performance are revealed. The current status, remaining challenges, and future perspectives in optoelectronic nanohybrids are also discussed. 
    more » « less
  4. Photocatalytic processes offer promising solutions for environmental remediation and clean energy production, yet their efficiency under the visible light spectrum remains a significant challenge. Here, we report a novel silver–graphene (Ag-G) modified TiO2 (Ag-G-TiO2) nanocomposite photocatalyst that demonstrates remarkably enhanced photocatalytic activity for both dye wastewater degradation and hydrogen production under visible and UV light irradiation. Through comprehensive characterization and performance analysis, we reveal that the Ag-G modification narrows the TiO2 bandgap from 3.12 eV to 1.79 eV, enabling efficient visible light absorption. The nanocomposite achieves a peak hydrogen production rate of 191 μmolesg−1h−1 in deionized (DI) water dye solution under visible light, significantly outperforming unmodified TiO2. Intriguingly, we observe an inverse relationship between dye degradation efficiency and hydrogen production rates in dye solutions with tap water versus DI water, highlighting the critical role of water composition in photocatalytic processes. This work not only advances the understanding of fundamental photocatalytic mechanisms but also presents a promising photocatalyst for solar-driven environmental remediation and clean energy production. The Ag-G-TiO2 nanocomposite’s enhanced performance across both visible and UV spectra, coupled with its dual functionality in dye degradation and hydrogen evolution, represents a significant step towards addressing critical challenges in water treatment and sustainable energy generation. Our findings highlight the complex interplay between light absorption and reaction conditions, offering new insights for optimizing photocatalytic systems. This research paves the way for developing more efficient and versatile photocatalysts, potentially contributing to the global transition towards sustainable technologies and circular economy in waste management and energy production. 
    more » « less
  5. Abstract An emerging class of heterostructures with unprecedented (photo)electrocatalytic behavior, involving the combination of fullerenes and low‐dimensional (LD) nanohybrids, is currently expanding the field of energy materials. The unique physical and chemical properties of fullerenes have offered new opportunities to tailor both the electronic structures and the catalytic activities of the nanohybrid structures. Here, we comprehensively review the synthetic approaches to prepare fullerene‐based hybrids with LD (0D, 1D, and 2D) materials in addition to their resulting structural and catalytic properties. Recent advances in the design of fullerene‐based LD nanomaterials for (photo)electrocatalytic applications are emphasized. The fundamental relationship between the electronic structures and the catalytic functions of the heterostructures, including the role of the fullerenes, is addressed to provide an in‐depth understanding of these emerging materials at the molecular level. 
    more » « less