skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 8, 2026

Title: Interplay of Hydrophobicity, Charge, and Sequence Length in Oligopeptide Coassembly
Peptide coassembly offers novel opportunities for designing advanced nanomaterials. This study used coarse-grained molecular dynamics simulations to examine the coassembly of charge-complementary peptides, assessing various ratios and the role of charge and hydrophobicity in their aggregation. We discovered that peptide length, charge, and hydrophobicity significantly influence coassembly behavior, with more hydrophobic peptides exhibiting greater aggregation despite electrostatic repulsion. Beyond the coassembly of two peptides, we also observed that the coassembly of more than two peptides will likely lead to new assembly structures and properties. Our findings underscore the importance of peptide composition and length in tuning the coassembly and the resulting properties, thus facilitating the design of complex peptide nanoparticles for biomedical and biotechnological applications.  more » « less
Award ID(s):
2317652
PAR ID:
10614824
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ACS
Date Published:
Journal Name:
The Journal of Physical Chemistry B
Volume:
129
Issue:
18
ISSN:
1520-6106
Page Range / eLocation ID:
4383 to 4391
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The aggregation of plasmonic nanoparticles can lead to new and controllable properties useful for numerous applications. We recently showed the reversible aggregation of gold nanoparticles (AuNPs) via a small, cationic di-arginine peptide; however, the mechanism underlying this aggregation is not yet comprehensively understood. Here, we seek insights into the intermolecular interactions of cationic peptide-induced assembly of citrate-capped AuNPs by empirically measuring how peptide identity impacts AuNP aggregation. We examined the nanoscale interactions between the peptides and the AuNPs via UV-vis spectroscopy to determine the structure-function relationship of peptide length and charge on AuNP aggregation. Careful tuning of the sequence of the di-arginine peptide demonstrated that the mechanism of assembly is driven by a reduction in electrostatic repulsion. We show that acetylated N-terminals and carboxylic acid C-terminals decrease the effectiveness of the peptide in inducing AuNP aggregation. The increase in peptide size through the addition of glycine or proline units hinders aggregation and leads to less redshift. Arginine-based peptides were also found to be more effective in assembling the AuNPs than cysteine-based peptides of equivalent length. We also illustrate that aggregation is independent of peptide stereochemistry. Finally, we demonstrate the modulation of peptide-AuNP behavior through changes to the pH, salt concentration, and temperature. Notably, histidine-based and tyrosine-based peptides could reversibly aggregate the AuNPs in response to the pH. 
    more » « less
  2. ABSTRACT The aggregation of plasmonic nanoparticles can lead to new and controllable properties useful for numerous applications. We recently showed the reversible aggregation of gold nanoparticles (AuNPs) via a small, cationic di‐arginine peptide; however, the mechanism underlying this aggregation is not yet comprehensively understood. Here, we seek insights into the intermolecular interactions of cationic peptide‐induced assembly of citrate‐capped AuNPs by empirically measuring how peptide identity impacts AuNP aggregation. We examined the nanoscale interactions between the peptides and the AuNPs via UV‐vis spectroscopy to determine the structure‐function relationship of peptide length and charge on AuNP aggregation. Careful tuning of the sequence of the di‐arginine peptide demonstrated that the mechanism of assembly is driven by a reduction in electrostatic repulsion. We show that acetylated N‐terminals and carboxylic acid C‐terminals decrease the effectiveness of the peptide in inducing AuNP aggregation. The increase in peptide size through the addition of glycine or proline units hinders aggregation and leads to less redshift. Arginine‐based peptides were also found to be more effective in assembling the AuNPs than cysteine‐based peptides of equivalent length. We also illustrate that aggregation is independent of peptide stereochemistry. Finally, we demonstrate the modulation of peptide‐AuNP behavior through changes to the pH, salt concentration, and temperature. Notably, histidine‐based and tyrosine‐based peptides could reversibly aggregate the AuNPs in response to the pH. 
    more » « less
  3. Abstract Hierarchical plasmonic biomaterials constructed from small nanoparticles (NPs) that combine into larger micron‐sized structures exhibit unique properties that can be harnessed for various applications. Using diffusion‐limited aggregation (DLA) and defined peptide sequences, we developed fractal silver biomaterials with a Brownian tree structure. This method avoids complex redox chemistry and allows precise control of interparticle distance and material morphology through peptide design and concentration. Our systematic investigation revealed how peptide charge, length, and sequence impact biomaterial morphology, confirming that peptides act as bridging motifs between particles and induce coalescence. Characterization through spectroscopy and microscopy demonstrated that arginine‐based peptides are optimal for fractal assembly based on both quantitative and qualitative measurements. Additionally, our study of diffusion behavior confirmed the effect of particle size, temperature, and medium viscosity on nanoparticle mobility. This work also provides insights into the facet distribution in silver NPs and their assembly mechanisms, offering potential advancements in the design of materials for medical, environmental, and electronic applications. 
    more » « less
  4. Peptide self-assembly, wherein molecule A associates with other A molecules to form fibrillar β-sheet structures, is common in nature and widely used to fabricate synthetic biomaterials. Selective coassembly of peptide pairs A and B with complementary partial charges is gaining interest due to its potential for expanding the form and function of biomaterials that can be realized. It has been hypothesized that charge-complementary peptides organize into alternating ABAB-type arrangements within assembled β-sheets, but no direct molecular-level evidence exists to support this interpretation. We report a computational and experimental approach to characterize molecular-level organization of the established peptide pair, CATCH. Discontinuous molecular dynamics simulations predict that CATCH(+) and CATCH(−) peptides coassemble but do not self-assemble. Two-layer β-sheet amyloid structures predominate, but off-pathway β-barrel oligomers are also predicted. At low concentration, transmission electron microscopy and dynamic light scattering identified nonfibrillar ∼20-nm oligomers, while at high concentrations elongated fibers predominated. Thioflavin T fluorimetry estimates rapid and near-stoichiometric coassembly of CATCH(+) and CATCH(−) at concentrations ≥100 μM. Natural abundance13C NMR and isotope-edited Fourier transform infrared spectroscopy indicate that CATCH(+) and CATCH(−) coassemble into two-component nanofibers instead of self-sorting. However,13C–13C dipolar recoupling solid-state NMR measurements also identify nonnegligible AA and BB interactions among a majority of AB pairs. Collectively, these results demonstrate that strictly alternating arrangements of β-strands predominate in coassembled CATCH structures, but deviations from perfect alternation occur. Off-pathway β-barrel oligomers are also suggested to occur in coassembled β-strand peptide systems. 
    more » « less
  5. Abstract Peptide–polymer amphiphiles (PPAs) are tunable hybrid materials that achieve complex assembly landscapes by combining the sequence‐dependent properties of peptides with the structural diversity of polymers. Despite their promise as biomimetic materials, determining how polymer and peptide properties simultaneously affect PPA self‐assembly remains challenging. We herein present a systematic study of PPA structure–assembly relationships. PPAs containing oligo(ethyl acrylate) and random‐coil peptides were used to determine the role of oligomer molecular weight, dispersity, peptide length, and charge density on self‐assembly. We observed that PPAs predominantly formed spheres rather than anisotropic particles. Oligomer molecular weight and peptide hydrophilicity dictated morphology, while dispersity and peptide charge affected particle size. These key benchmarks will facilitate the rational design of PPAs that expand the scope of biomimetic functionality within assembled soft materials. 
    more » « less