Abstract A mononuclear nonheme manganese(IV)–oxo complex binding the Ce4+ion, [(dpaq)MnIV(O)]+–Ce4+(1‐Ce4+), was synthesized by reacting [(dpaq)MnIII(OH)]+(2) with cerium ammonium nitrate (CAN).1‐Ce4+was characterized using various spectroscopic techniques, such as UV/Vis, EPR, CSI‐MS, resonance Raman, XANES, and EXAFS, showing an Mn−O bond distance of 1.69 Å with a resonance Raman band at 675 cm−1. Electron‐transfer and oxygen atom transfer reactivities of1‐Ce4+were found to be greater than those of MnIV(O) intermediates binding redox‐inactive metal ions (1‐Mn+). This study reports the first example of a redox‐active Ce4+ion‐bound MnIV‐oxo complex and its spectroscopic characterization and chemical properties.
more »
« less
This content will become publicly available on April 27, 2026
Differentiating Ligand Tailoring and Cation Incorporation as Strategies for Tuning Heterobimetallic Cerium Complexes
Abstract Tuning of redox‐active complexes featuring metals with high coordination numbers by incorporation of secondary redox‐inactive cations has received far less attention than it deserves. Here, appending moderate steric bulk to a tripodal ligand framework has been tested for its influence on secondary‐cation‐driven structural and electrochemical tuning of cerium, a lanthanide that tends to adopt high coordination numbers. Aquasi‐C3‐symmetric cerium(III) complex denoted[Ce]has been prepared that features pendant benzyloxy groups, and this work demonstrates that this species offers a site capable of binding single Na+or Ca2+ions. Electrochemical and UV‐visible spectroscopic studies reveal equilibrium binding affinity of[Ce]for Na+in acetonitrile solvent, contrasting with tight binding of all cations in all other previously studied systems of this type. The modulated cation binding can be attributed to the bulky benzyloxy groups, which impact the thermodynamics of cation binding but do not impede the formation of cerium centers with coordination number 8 upon binding of either Na+or Ca2+. The Ce(IV/III) reduction potential was found to be tunable under the equilibrium binding conditions, highlighting the potentially significant role that controlled structural changes can play in modulating the solution properties of heterobimetallic complexes.
more »
« less
- Award ID(s):
- 1922649
- PAR ID:
- 10614858
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Chemistry – A European Journal
- Volume:
- 31
- Issue:
- 32
- ISSN:
- 0947-6539
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Bis(triphenylsulfonium) tetrachloridomanganate(II), (C18H15S)2[MnCl4] (I), triphenylsulfonium tetrachloridoferrate(III), (C18H15S)[FeCl4] (II), and bis(triphenylsulfonium) tetrachloridocobaltate(II), (C18H15S)2[CoCl4] (III), crystallize in the monoclinic space groupsP21/n[(I) and (III)] andP21/c[(II)]. Compounds (I) and (III) each contain two crystallographically independent triphenylsulfonium (TPS+) cations in the asymmetric unit, whereas (II) has one. In all three compounds, the sulfonium centers adopt distorted trigonal–pyramidal geometries, with S—C bond lengths falling roughly in the 1.78–1.79 Å range and C—S—C angles observed at about 101 to 106°. The [MCl4]n−anions (M= Mn2+, Fe3+, Co2+;n= 2,1,2) adopt slightly distorted tetrahedral geometries, withM—Cl bond lengths in the 2.19–2.38 Å range and Cl—M—Cl angles of approximately 104–113°. Hirshfeld surface analyses shows that H...H and H...C contacts dominate the TPS+cation environments, whereas H...Cl and shortM—S interactions link each [MCl4]n−anion to the surrounding cations. In (I) and (III), inversion-centered π–π stacking further consolidates the crystal packing, while in (II) no π–π interactions are observed.more » « less
-
Abstract Chemical reduction of pentacene (C22H14,1) with Group 1 metals ranging from Li to Cs revealed that1readily undergoes a two‐fold reduction to afford a doubly‐reduced12−anion in THF. With the help of 18‐crown‐6 ether used as a secondary coordinating agent, five π‐complexes of12−with different alkali metal counterions have been isolated and fully characterized. This series of complexes enables the first evaluation of alkali‐metal ion binding patterns and structural changes of the12−dianion based on the crystallographically confirmed examples. The difference in coordination of the smallest Li+ion vs. heavier Group 1 congeners has been demonstrated. In addition, the use of benzo‐15‐crown‐5 in the reaction of1with Na metal allowed the isolation of the unique solvent‐separated ion product with a “naked” dianion,12−. The detailed structural analyses of the series revealed the C−C bond alteration and core deformation of pentacene upon two‐fold reduction and complexation. The negative charge localization at the central six‐membered ring of12−identified by theoretical calculations corroborates with the X‐ray crystallographic results. Subsequent in‐depth theoretical analysis provided a detailed description of changes in the electronic structure and aromaticity of pentacene upon reduction.more » « less
-
Abstract Complexation between a viologen radical cation (V.+) and cyclobis(paraquat‐p‐phenylene) diradical dication (CBPQT2(.+)) has been investigated and utilized extensively in the construction of mechanically interlocked molecules (MIMs) and artificial molecular machines (AMMs). The selective recognition of a pair ofV.+using radical‐pairing interactions, however, remains a formidable challenge. Herein, we report the efficient encapsulation of two methyl viologen radical cations (MV.+) in a size‐matched bisradical dicationic host — namely, cyclobis(paraquat‐2,6‐naphthalene)2(.+), i.e.,CBPQN2(.+). Central to this dual recognition process was the choice of 2,6‐bismethylenenaphthalene linkers for incorporation into the bisradical dicationic host. They provide the space between the two bipyridinium radical cations inCBPQN2(.+)suitable for binding twoMV.+with relatively short (3.05–3.25 Å) radical‐pairing distances. The size‐matched bisradical dicationic host was found to exhibit highly selective and cooperative association with the twoMV.+in MeCN at room temperature. The formation of the tetrakisradical tetracationic inclusion complex — namely, [(MV)2⊂CBPQN]4(.+)– in MeCN was confirmed by VT1H NMR, as well as by EPR spectroscopy. The solid‐state superstructure of [(MV)2⊂CBPQN]4(.+)reveals an uneven distribution of the binding distances (3.05, 3.24, 3.05 Å) between the three differentV.+, suggesting that localization of the radical‐pairing interactions has a strong influence on the packing of the twoMV.+inside the bisradical dicationic host. Our findings constitute a rare example of binding two radical guests with high affinity and cooperativity using host‐guest radical‐pairing interactions. Moreover, they open up possibilities of harnessing the tetrakisradical tetracationic inclusion complex as a new, orthogonal and redox‐switchable recognition motif for the construction of MIMs and AMMs.more » « less
-
Abstract A pair of novel Fe‐alkynyl complexes, [FeIII(HMTI)(C2SiEt3)2]ClO4(2) and [FeII(HMTI)(C2SiEt3)(NCCH3)]ClO4(3), is described herein. Reaction of Fe(meso‐HMC)Cl(ClO4)]ClO4(1) with lithiated triethylsilylacetylene and subsequent exposure to oxygen yielded the bis‐alkynyl2containing the dehydrogenated tetraimine macrocycle (HMTI). Reduction of2by mossy zinc in acetonitrile yielded the mono‐alkynyl3. The structures of2and3were determined using single‐crystal X‐ray diffraction. Analysis of visible absorption and electrochemical data establishes the redox‐active nature of the HMTI macrocycle, and indicates significant interactions between the Fedπ and tetraimine π* orbitals. These deductions are further supported by density functional theory calculations.more » « less
An official website of the United States government
