DNA metabarcoding and morphological taxonomic (microscopic) analysis of the gut contents was used to examine diet diversity of seven species of fishes collected from mesopelagic depths (200-1000 m) in the NW Atlantic Ocean Slope Water during Summer 2018 and 2019. Metabarcoding used two gene regions: V9 hypervariable region of nuclear 18S rRNA and mitochondrial cytochrome oxidase I (COI). V9 sequences were classified into 14 invertebrate prey groups, excluding fish due to predator swamping. Ecological network analysis was used to evaluate relative strengths of predator-prey linkages. Multivariate statistical analysis revealed consistently distinct diets of four fish species in 2018 and/or 2019:Argyropelecus aculeatus, Chauliodus sloani, Hygophum hygomii, andSigmops elongatus. Three other species analyzed (Malacosteus niger, Nemichthys scolopaceus, andScopelogadus beanii) showed more variability between sampling years. COI sequences were classified into eight invertebrate prey groups, within which prey species were detected and identified. Considering all predator species together, a total of 77 prey species were detected with a minimum of 1,000 COI sequences, including 22 copepods, 18 euphausiids, and 7 amphipods. Morphological prey counts were classified into seven taxonomic groups, including a gelatinous group comprised of soft-bodied organisms. The ocean twilight zone or is home to exceptional diversity and biomass of marine fish, which are key players in deep sea food webs. This study used integrative morphological-molecular analysis to provide new insights into trophic relationships and sources of productivity for mesopelagic fishes, including identification of key prey species, recognition of the importance of gelatinous prey, and characterization of differences in diet among fish predators in the NW Atlantic Slope Water.
more »
« less
This content will become publicly available on May 27, 2026
Spawning in the deep: reproductive life history of four mesopelagic fishes of the northwestern Atlantic Ocean
The biomass of mesopelagic fishes is estimated to be on the order of or to exceed that of fishes in the epipelagic. Despite their abundance and importance as an ecological link between surface and deep ocean habitats, there is a dearth of basic life history data for mesopelagic fishes. Reproductive biology data are critical for understanding population dynamics and estimating production of a species, particularly when age and growth data are lacking. Between July 2018 and August 2022, collections were made in the western North Atlantic utilizing multiple net types to capture a broad size-range of mesopelagic fishes. Histological analysis of gonad tissue from four numerically dominant species—Argyropelecus aculeatus(Sternoptychidae),Benthosema glaciale(Myctophidae),Scopelogadus beanii(Melamphaidae), andSigmops elongatus(Gonostomatidae)—were examined to describe aspects of reproduction. We determined thatA. aculeatusandB. glacialeare gonochoristic batch spawners with indeterminate fecundity, and the standard length at which 50% of females were mature (L50) was 39.45 and 33.77 mm, respectively.S. beaniiwere found to be gonochoristic, iteroparous, and likely have multi-year oocyte development with an L50of 90.38 mm.S. elongatuswas confirmed as a protandrous hermaphrodite, iteroparous, and had an L50of 200.45 mm. This study is the first to present regional maturity ogives for all four species and to describe detailed reproductive patterns inA. aculeatus, S. beanii, andS. elongatus.These results contribute to the data necessary for quantifying the role of mesopelagic fishes in global biogeochemical cycles and for ensuring responsible use of mesopelagic resources.
more »
« less
- PAR ID:
- 10615034
- Publisher / Repository:
- Frontiers Media
- Date Published:
- Journal Name:
- Frontiers in Marine Science
- Volume:
- 12
- ISSN:
- 2296-7745
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Cyanobacteria have been proposed as a potential alternative carbohydrate feedstock and multiple species have been successfully engineered to secrete fermentable sugars. To date, the most productive cyanobacterial strains are those designed to secrete sucrose, yet there exist considerable differences in reported productivities across different model species and laboratories. In this study, we investigate how cultivation conditions (specifically, irradiance, CO2, and cultivator type) affect the productivity of sucrose-secretingSynechococcus elongatusPCC 7942. We find thatS. elongatusproduces the highest sucrose yield in irradiances far greater than what is often experimentally utilized, and that high light intensities are tolerated byS. elongatus, especially under higher density cultivation where turbidity may attenuate the effective light experienced in the culture. By increasing light and inorganic carbon availability,S. elongatus cscB/spsproduced a total of 3.8 g L-1of sucrose and the highest productivity within that period being 47.8 mg L-1h-1. This study provides quantitative description of the impact of culture conditions on cyanobacteria-derived sucrose that may assist to standardize cross-laboratory comparisons and demonstrates a significant capacity to improve productivity via optimizing cultivation conditions.more » « less
-
The simple synthesis of a Ni–TiO2nanocomposite supported on Vulcan carbon (XC–72 R) for the electrooxidation reaction of glucose is reported. Four transition metal weight ratios were synthesized and characterized. Cyclic voltammetry studies in 0.1 M NaOH demonstrate that the four metal catalysts can effectively oxidize 1 mM glucose, with the 3:1 (60%) Ni to Ti nanocomposite yielding the highest current. The 60% Ni–TiO2/XC72R catalyst was used to construct an enzyme–less, chronoamperometric sensor for glucose detection in an alkaline medium. Using 50μM aliquots of glucose at a potential of +0.7 V (vs Hg/HgO), the sensor responded rapidly (<3 s), provided a sensitivity of 3300μA mM−1cm−2, detection limits of 144 nM (Signal/Noise = 3), and excellent selectivity and reproducibility. The glucose aliquot concentrations were then increased to 1 mM to mimic physiological blood conditions of 1–20 mM. At a potential of +0.7 V (vs Hg/HgO), the sensor continued to respond rapidly (<1 s), showed a sensitivity of 273.7μA mM−1cm−2, detection limits of 3.13μM (S/N = 3), and excellent selectivity and reproducibility. The catalyst also exhibited an ideal anti–poisoning capability to free chloride ions and negligible signals towards other interfering species.more » « less
-
Abstract Engineered cyanobacteriumSynechococcus elongatuscan use light and CO2to produce sucrose, making it a promising candidate for use in co-cultures with heterotrophic workhorses. However, this process is challenged by the mutual stresses generated from the multispecies microbial culture. Here we demonstrate an ecosystem whereS. elongatusis freely grown in a photo-bioreactor (PBR) containing an engineered heterotrophic workhorse (either β-carotene-producingYarrowia lipolytica or indigoidine-producingPseudomonas putida) encapsulated in calcium-alginate hydrogel beads. The encapsulation prevents growth interference, allowing the cyanobacterial culture to produce high sucrose concentrations enabling the production of indigoidine and β-carotene in the heterotroph. Our experimental PBRs yielded an indigoidine titer of 7.5 g/L hydrogel and a β-carotene titer of 1.3 g/L hydrogel, amounts 15–22-fold higher than in a comparable co-culture without encapsulation. Moreover,13C-metabolite analysis and protein overexpression tests indicated that the hydrogel beads provided a favorable microenvironment where the cell metabolism inside the hydrogel was comparable to that in a free culture. Finally, the heterotroph-containing hydrogels were easily harvested and dissolved by EDTA for product recovery, while the cyanobacterial culture itself could be reused for the next batch of immobilized heterotrophs. This co-cultivation and hydrogel encapsulation system is a successful demonstration of bioprocess optimization under photobioreactor conditions.more » « less
-
The small, eyeless beetles of the genus Anillinus Casey (Coleoptera: Carabidae: Trechinae: Anillini) comprise a diverse, ubiquitous, but poorly known component of insect biodiversity in the southeastern United States. Their limited dispersal capabilities make them ideal subjects for biogeography, but taxonomic problems and undescribed species diversity hamper such studies. In this paper, we redescribe four enigmatic species, Anillinus docwatsoni Sokolov and Carlton, Anillinus elongatus Jeannel, Anillinus pecki Giachino, and Anillinus turneri Jeannel, and consider their relationships. The elongatus species group is revised, with descriptions of four newly discovered species, Anillinus arenicollis Harden and Caterino, new species, Anillinus montrex Harden and Caterino, new species, Anillinus pittsylvanicus Harden and Caterino, new species, and Anillinus uwharrie Harden and Caterino, new species. Two species previously considered part of the elongatus group are determined to not belong here, Anillinus cavicola Sokolov and Anillinus turneri Jeannel. The exact placement of A. turneri remains uncertain, but it shares some character states with the sinuaticollis group. We erect the pecki group for A. docwatsoni and A. pecki, which are likely sister species. We provide a key to the eastern species groups of Anillinus and the species of the elongatus and pecki species groups. Anillinus pecki is broadly distributed in the southern Appalachian Mountains northeast of the French Broad River basin, while A. docwatsoni is apparently endemic to the Hickory Nut Gorge in western North Carolina. Anillinus pecki is reported for the first time from Tennessee and Virginia. All members of the elongatus group have small geographic ranges and are difficult to sample without special techniques, hinting that many more species await discovery in the densely populated Piedmont region of North Carolina, where natural habitats are rapidly being lost. Our sampling was not dense enough to test biogeographic hypotheses, but distributions of the elongatus group species suggest that hydrochory might have played an important role in passive dispersal and reproductive isolation. These taxonomic contributions will facilitate future studies on the genus and serve to highlight the rich insect biodiversity that remains to be discovered in the southeastern United States.more » « less
An official website of the United States government
