skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Future Changes in the Vertical Structure of Severe Convective Storm Environments over the U.S. Central Great Plains
Abstract The effect of warming on severe convective storm potential is commonly explained in terms of changes in vertically integrated (“bulk”) environmental parameters, such as CAPE and 0–6-km shear. However, such events are known to depend on the details of the vertical structure of the thermodynamic and kinematic environment that can change independently of these bulk parameters. This work examines how warming may affect the complete vertical structure of these environments for fixed ranges of values of high CAPE and bulk shear, using data over the central Great Plains from two high-performing climate models (CNRM and MPI). To first order, projected changes in the vertical sounding structure are consistent between the two models: the environment warms approximately uniformly with height at constant relative humidity, and the shear profile remains relatively constant. The boundary layer becomes slightly drier (−2% to 6% relative humidity) while the free troposphere becomes slightly moister (+1% to 3%), with a slight increase in moist static energy deficit aloft with stronger magnitude in CNRM. CNRM indicates enhanced low-level shear and storm-relative helicity associated with stronger hodograph curvature in the lowest 2 km, whereas MPI shows near-zero change. Both models strongly underestimate shear below 1 km compared to ERA5, indicating large uncertainty in projecting subtle changes in the low-level flow structure in climate models. The evaluation of the net effect of these modest thermodynamic and kinematic changes on severe convective storm outcomes cannot be ascertained here but could be explored in simulation experiments. Significance StatementSevere thunderstorms and tornadoes cause substantial damage and loss of life each year, which raise concerns about how they may change as the world warms. We typically use a small number of common atmospheric parameters to understand how these localized events may change with climate change. However, climate change may alter the weather patterns that produce these events in ways not captured by these parameters. This work examines how climate change may alter the complete vertical structure of temperature, moisture, and wind and discusses the potential implications of these changes for future severe thunderstorms and tornadoes.  more » « less
Award ID(s):
2209052
PAR ID:
10615044
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Climate
Volume:
37
Issue:
21
ISSN:
0894-8755
Page Range / eLocation ID:
5561 to 5578
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Long-term trends in the historical frequency of environments supportive of atmospheric convection are unclear, and only partially follow the expectations of a warming climate. This uncertainty is driven by the lack of unequivocal changes in the ingredients for severe thunderstorms (i.e., conditional instability, sufficient low-level moisture, initiation mechanism, and vertical wind shear). ERA5 hybrid-sigma data allow for superior characterization of thermodynamic parameters including convective inhibition, which is very sensitive to the number of levels in the lower troposphere. Using hourly data we demonstrate that long-term decreases in instability and stronger convective inhibition cause a decline in the frequency of thunderstorm environments over the southern United States, particularly during summer. Conversely, increasingly favorable conditions for tornadoes are observed during winter across the Southeast. Over Europe, a pronounced multidecadal increase in low-level moisture has provided positive trends in thunderstorm environments over the south, central, and north, with decreases over the east due to strengthening convective inhibition. Modest increases in vertical wind shear and storm-relative helicity have been observed over northwestern Europe and the Great Plains. Both continents exhibit negative trends in the fraction of environments with likely convective initiation. This suggests that despite increasing instability, thunderstorms in a warming climate may be less likely to develop due to stronger convective inhibition and lower relative humidity. Decreases in convective initiation and resulting precipitation may have long-term implications for agriculture, water availability, and the frequency of severe weather such as large hail and tornadoes. Our results also indicate that trends observed over the United States cannot be assumed to be representative of other continents. 
    more » « less
  2. Abstract Reanalysis proximity vertical profile attributes associated with long-track tornadoes [LTTs; pathlength ≥ 48 km (30 mi)] and short-track tornadoes [STTs; pathlengths < 48 km (30 mi)] for a total of 48 212 tornadoes with pathlengths ≥ 0.016 km (0.01 mi) from 1979 to 2022 in the United States were examined. Both longer- and shorter-track tornadoes were associated with vast ranges of mixed-layer convective available potential energy, together with relatively low mixed-layer lifted condensation level heights and minimal convective inhibition. A large range of 500–9000-m wind speeds and bulk wind differences, 500–3000-m streamwise vorticities, storm-relative helicities, and storm-relative wind speeds were found for STTs. In stark contrast, LTTs only occurred when these kinematic attributes were larger in amplitude through the troposphere, supporting previously documented associations between observed longer-track tornado pathlengths and faster-propagating parent storms. A novel parameter, heavily weighted by kinematic parameters and lightly weighted by thermodynamic parameters, outperformed the significant tornado parameter in differentiating environments that were more supportive of both LTTs and tornadoes rated R2= 0.79 between tornado pathlength and Bunkers’ approximate tornado duration (pathlength/VBunkers) call for improved understanding of mesocyclone periodicities, which impact tornado longevity, to improve tornado pathlength diagnoses and forecasts. Pragmatically, diagnosing LTT environments using vertical profile attributes, perhaps, is not so much a problem of determining when there might be higher expectations for LTTs, but rather a problem of when there might be lower expectations for LTTs, e.g., weaker kinematic attributes in the lower troposphere. Significance StatementThe majority of tornadoes have pathlengths less than a few kilometers. As tornado pathlengths increase, their probability of causing impacts to society also increases. We study >40 years of modeled atmospheric vertical profiles to better understand the environmental conditions that support long-track tornadoes (pathlength ≥ 48 km or ≥30 mi). Consistent with previous studies, long-track tornadoes occurred with substantially stronger vertical wind shear profiles and low-level winds compared to short-track tornadoes; however, most tornadoes did not form in environments with exceedingly large vertical instability, regardless of pathlength or intensity. A proposed composite long-track tornado parameter (LTTP) provided better discrimination between longer and shorter pathlength events compared to preexisting parameters. 
    more » « less
  3. null (Ed.)
    Abstract The response of severe local storms to environmental evolution across the early evening transition (EET) remains a forecasting challenge, particularly within the context of the Southeast US storm climatology, which includes the increased presence of low-CAPE environments and tornadic non-supercell modes. To disentangle these complex environmental interactions, Southeast severe convective reports spanning 2003-2018 are temporally binned relative to local sunset. Sounding-derived data corresponding to each report are used to characterize how the near-storm environment evolves across the EET, and whether these changes influence the mode, frequency, and tornadic likelihood of their associated storms. High-shear, high-CAPE (HSHC) environments are contrasted with high-shear, low-CAPE (HSLC) environments to highlight physical processes governing storm maintenance and tornadogenesis in the absence of large instability. Lastly, statistical analysis is performed to determine which aspects of the near-storm environment most effectively discriminate between tornadic (or significantly tornadic) and nontornadic storms towards constructing new sounding-derived forecast guidance parameters for multiple modal and environmental combinations. Results indicate that HSLC environments evolve differently than HSHC environments, particularly for non-supercell (e.g., quasi-linear convective system) modes. These low-CAPE environments sustain higher values of low-level shear and storm-relative helicity (SRH) and destabilize post-sunset – potentially compensating for minimal buoyancy. Furthermore, the existence of HSLC storm environments pre-sunset increases the likelihood of non-supercellular tornadoes post-sunset. Existing forecast guidance metrics such as the significant tornado parameter (STP) remain the most skillful predictors of HSHC tornadoes. However, HSLC tornado prediction can be improved by considering variables like precipitable water, downdraft CAPE, and effective inflow base. 
    more » « less
  4. Abstract Environments associated with severe hailstorms, compared to those of tornadoes, are often less apparent to forecasters. Understanding has evolved considerably in recent years; namely, that weak low-level shear and sufficient convective available potential energy (CAPE) above the freezing level is most favorable for large hail. However, this understanding comes only from examining the mean characteristics of large hail environments. How much variety exists within the kinematic and thermodynamic environments of large hail? Is there a balance between shear and CAPE analogous to that noted with tornadoes? We address these questions to move toward a more complete conceptual model. In this study, we investigate the environments of 92 323 hail reports (both severe and nonsevere) using ERA5 modeled proximity soundings. By employing a self-organizing map algorithm and subsetting these environments by a multitude of characteristics, we find that the conditions leading to large hail are highly variable, but three primary patterns emerge. First, hail growth depends on a favorable balance of CAPE, wind shear, and relative humidity, such that accounting for entrainment is important in parameter-based hail prediction. Second, hail growth is thwarted by strong low-level storm-relative winds, unless CAPE below the hail growth zone is weak. Finally, the maximum hail size possible in a given environment may be predictable by the depth of buoyancy, rather than CAPE itself. 
    more » « less
  5. Abstract We analyze the evolution of convective available potential energy (CAPE) and convective inhibition (CIN) in the days leading up to episodes of high CAPE in North America. The widely accepted theory for CAPE buildup, known as the advection hypothesis, states that high moist static energy (MSE) parcels of air moving north from the Gulf of Mexico become trapped under warm but dry parcels moving east from over elevated dry terrain. If and when the resulting CIN erodes, severe convection can occur due to the large energy difference between the boundary layer parcels and cool air aloft. However, our results, obtained via backward Lagrangian tracking of parcels at locations of peak CAPE, show that large values of CAPE are generated mainly via boundary layer moistening in the days leading up to the time of peak CAPE, and that a large portion of this moisture buildup happens on the day of peak CAPE. On the other hand, the free-tropospheric temperature above these tracked parcels rarely changes significantly over the days leading up to such occurrences. In addition, the CIN that allows for this buildup of CAPE arises mostly from unusually strong boundary layer cooling the night before peak CAPE, and has a contribution from differential advection of unusually warm air above the boundary layer to form a capping inversion. These results have important implications for the climatology of severe convective events, as it emphasizes the role of surface properties and their gradients in the frequency and intensity of high CAPE occurrences. Significance Statement Severe convective events, such as thunderstorms, tornadoes, and hail storms, are among the most deadly and destructive weather systems. Although forecasters are quite good at predicting the probability of these events a few days in advance, there is currently no reliable seasonal prediction method of severe convection. We show that the buildup of energy for severe convection relies on both strong surface evaporation during the day of peak energy and anomalous cooling the night before. This progress represents a step toward understanding what controls the frequency of severe convective events on seasonal and longer time scales, including the effect of greenhouse gas–induced climate change. 
    more » « less