skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Typology Development for Synthetic Chemistry Sub-Tasks: Towards Human-Robot Collaboration Task Design in the Wet Lab
Chemical manufacturing is a growing field that contributes to many industries and employs tens of thousands of researchers in wet labs. Automation tools for synthetic chemistry are of interest not only for their potential impact on efficiency and productivity, but also on human resources and safety, since synthetic chemistry poses a number of occupational risks and is largely inaccessible to researchers with physical disabilities. Currently, most automation tools for synthetic chemistry are either designed to perform highly specialized tasks or they are designed as closed-loop systems with minimal interaction between human and machine during a synthesis procedure. We are pursuing an alternative, human-centered approach to robotic tools for synthetic chemistry, in which general-purpose collaborative robots (cobots) offer diverse forms of support to human researchers in the lab. In order to design frameworks for productive scientist-cobot collaborations, we need a deep understanding of the task space in synthetic chemistry labs and the impact of these various activities on the researchers. Based on observations and surveys from a group of experimental scientists, we have identified and analyzed 10 manual tasks commonly performed by researchers in the wet lab, each of which may be broken down into a sequence of sub-tasks. We conducted an in-depth analysis of the two most frequently performed sub-tasks: liquids dispensing and solids handling. Through subcoding, we identified 40 liquid dispensing typologies and 18 solid handling typologies, and evaluated the burden associated with each of these sub-tasks using the NASA TLX. These data will be of value for the design of human-centered automation tools that support, rather than displace, researchers performing manual tasks in the lab, in order to foster a safer and more accessible lab environment.  more » « less
Award ID(s):
2222952
PAR ID:
10615163
Author(s) / Creator(s):
;
Publisher / Repository:
American Society of Mechanical Engineers
Date Published:
ISBN:
978-0-7918-8840-7
Format(s):
Medium: X
Location:
Washington, DC, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Oxygen tolerant polymerizations including Photoinduced Electron/Energy Transfer-Reversible Addition–Fragmentation Chain-Transfer (PET-RAFT) polymerization allow for high-throughput synthesis of diverse polymer architectures on the benchtop in parallel. Recent developments have further increased throughput using liquid handling robotics to automate reagent handling and dispensing into well plates thus enabling the combinatorial synthesis of large polymer libraries. Although liquid handling robotics can enable automated polymer reagent dispensing in well plates, photoinitiation and reaction monitoring require automation to provide a platform that enables the reliable and robust synthesis of various polymer compositions in high-throughput where polymers with desired molecular weights and low dispersity are obtained. Here, we describe the development of a robotic platform to fully automate PET-RAFT polymerizations and provide individual control of reactions performed in well plates. On our platform, reagents are automatically dispensed in well plates, photoinitiated in individual wells with a custom-designed lightbox until the polymerizations are complete, and monitored online in real-time by tracking fluorescence intensities on a fluorescence plate reader, with well plate transfers between instruments occurring via a robotic arm. We found that this platform enabled robust parallel polymer synthesis of both acrylate and acrylamide homopolymers and copolymers, with high monomer conversions and low dispersity. The successful polymerizations obtained on this platform make it an efficient tool for combinatorial polymer chemistry. In addition, with the inclusion of machine learning protocols to help navigate the polymer space towards specific properties of interest, this robotic platform can ultimately become a self-driving lab that can dispense, synthesize, and monitor large polymer libraries. 
    more » « less
  2. Abstract The “cloud lab,” an automated laboratory that allows researchers to program and conduct physical experiments remotely, represents a paradigm shift in scientific practice. This shift from wet‐lab research as a primarily manual enterprise to one more akin to programming bears incredible promise by democratizing a completely new level of automation and its advantages to the scientific community. Moreover, they provide a foundation on which automated science driven by artificial intelligence (A.I.) can be built upon and thereby resolve limitations in scope and accessibility that current systems face. With a focus on DNA nanotechnology, the authors have had the opportunity to explore and apply the cloud lab to active research. This perspective delves into the future potential of cloud labs in accelerating scientific research and broadening access to automation. The challenges associated with the technology in its current state are further explored, including difficulties in experimental troubleshooting, the limited applicability of its parallelization in an academic setting, as well as the potential reduction in experimental flexibility associated with the approach. 
    more » « less
  3. Takano, Eriko; Breitling, Rainer (Ed.)
    Synthetic biology is a field at the intersection of biology and engineering. Inspired by engineering principles, researchers use defined parts to build functionally defined biological circuits. Genetic design automation allows scientists to design, model, and analyze their genetic circuits in silico before building them in the lab, saving time and resources in the process. Establishing synthetic biology’s future is dependent on genetic design automation, since the computational approach opens the field to a broad, interdisciplinary community. However, challenges with part libraries, standards, and software tools are currently stalling progress in the field. This review first covers re- cent advancements in genetic design automation, followed by an assessment of the challenges ahead, and a proposed automated genetic design workflow for the future. 
    more » « less
  4. Collaborative robots promise to transform work across many industries and promote “human-robot teaming” as a novel paradigm. However, realizing this promise requires the understanding of how existing tasks, developed for and performed by humans, can be effectively translated into tasks that robots can singularly or human-robot teams can collaboratively perform. In the interest of developing tools that facilitate this process we present Authr, an end-to-end task authoring environment that assists engineers at manufacturing facilities in translating existing manual tasks into plans applicable for human-robot teams and simulates these plans as they would be performed by the human and robot. We evaluated Authr with two user studies, which demonstrate the usability and effectiveness of Authr as an interface and the benefits of assistive task allocation methods for designing complex tasks for human-robot teams. We discuss the implications of these findings for the design of software tools for authoring human-robot collaborative plans. 
    more » « less
  5. This paper presents and discusses the use of simulation-based customizable online learning activities, virtual laboratories, and comprehensive e-Learning environments for teaching subjects such as materials science, chemistry, and biomanufacturing. The virtual equipment and lab assignments have been used for: (i) authentic online experimentation, (ii) homework and control assignments with traditional and blended courses, (iii) preparing students for hands-on work in real labs, (iv) lecture demonstrations, and (v) performance-based assessment of students’ ability to apply gained theoretical knowledge for operating actual equipment and solving practical problems. Using the associated learning and content management system (LCMS) and authoring tools, instructors kept track of student performance and designed new virtual experiments and more personalized learning assignments for students. Virtual X-Ray Laboratory and Web-based Environment for Single-Use Upstream Bioprocessing have been used to illustrate the implementation of the concept of Interactive and Adjustable Cloud-based e-Learning Tools. The virtual labs and e-learning environments have been used at two-year and four-year colleges and universities in the USA, UK, Tanzania and some other countries. The virtual X-Ray lab has also been integrated with the MITx course delivered via the MOOC (massive open online course) edX platform for Massachusetts Institute of Technology undergraduate students. 
    more » « less