Abstract High fidelity models used in many science and engineering applications couple multiple physical states and parameters. Inverse problems arise when a model parameter cannot be determined directly, but rather is estimated using (typically sparse and noisy) measurements of the states. The data is usually not sufficient to simultaneously inform all of the parameters. Consequently, the governing model typically contains parameters which are uncertain but must be specified for a complete model characterization necessary to invert for the parameters of interest. We refer to the combination of the additional model parameters (those which are not inverted for) and the measured data states as the ‘complementary parameters’. We seek to quantify the relative importance of these complementary parameters to the solution of the inverse problem. To address this, we present a framework based on hyper-differential sensitivity analysis (HDSA). HDSA computes the derivative of the solution of an inverse problem with respect to complementary parameters. We present a mathematical framework for HDSA in large-scale PDE-constrained inverse problems and show how HDSA can be interpreted to give insight about the inverse problem. We demonstrate the effectiveness of the method on an inverse problem by estimating a permeability field, using pressure and concentration measurements, in a porous medium flow application with uncertainty in the boundary conditions, source injection, and diffusion coefficient.
more »
« less
This content will become publicly available on February 1, 2026
Using deep learning to design high aspect ratio fusion devices
The design of fusion devices is typically based on computationally expensive simulations. This can be alleviated using high aspect ratio models that employ a reduced number of free parameters, especially in the case of stellarator optimization where non-axisymmetric magnetic fields with a large parameter space are optimized to satisfy certain performance criteria. However, optimization is still required to find configurations with properties such as low elongation, high rotational transform, finite beta and good fast particle confinement. In this work, we train a machine learning model to construct configurations with favourable confinement properties by finding a solution to the inverse design problem, that is, obtaining a set of model input parameters for given desired properties. Since the solution of the inverse problem is non-unique, a probabilistic approach, based on mixture density networks, is used. It is shown that optimized configurations can be generated reliably using this method.
more »
« less
- Award ID(s):
- 2409066
- PAR ID:
- 10615208
- Publisher / Repository:
- Journal of Plasma Physics
- Date Published:
- Journal Name:
- Journal of Plasma Physics
- Volume:
- 91
- Issue:
- 1
- ISSN:
- 0022-3778
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
One of the most common types of models that helps us to understand neuron behavior is based on the Hodgkin–Huxley ion channel formulation (HH model). A major challenge with inferring parameters in HH models is non-uniqueness: many different sets of ion channel parameter values produce similar outputs for the same input stimulus. Such phenomena result in an objective function that exhibits multiple modes (i.e., multiple local minima). This non-uniqueness of local optimality poses challenges for parameter estimation with many algorithmic optimization techniques. HH models additionally have severe non-linearities resulting in further challenges for inferring parameters in an algorithmic fashion. To address these challenges with a tractable method in high-dimensional parameter spaces, we propose using a particular Markov chain Monte Carlo (MCMC) algorithm, which has the advantage of inferring parameters in a Bayesian framework. The Bayesian approach is designed to be suitable for multimodal solutions to inverse problems. We introduce and demonstrate the method using a three-channel HH model. We then focus on the inference of nine parameters in an eight-channel HH model, which we analyze in detail. We explore how the MCMC algorithm can uncover complex relationships between inferred parameters using five injected current levels. The MCMC method provides as a result a nine-dimensional posterior distribution, which we analyze visually with solution maps or landscapes of the possible parameter sets. The visualized solution maps show new complex structures of the multimodal posteriors, and they allow for selection of locally and globally optimal value sets, and they visually expose parameter sensitivities and regions of higher model robustness. We envision these solution maps as enabling experimentalists to improve the design of future experiments, increase scientific productivity and improve on model structure and ideation when the MCMC algorithm is applied to experimental data.more » « less
-
Abstract Procedural modeling allows for an automatic generation of large amounts of similar assets, but there is limited control over the generated output. We address this problem by introducing Automatic Differentiable Procedural Modeling (ADPM). The forward procedural model generates a final editable model. The user modifies the output interactively, and the modifications are transferred back to the procedural model as its parameters by solving an inverse procedural modeling problem. We present an auto‐differentiable representation of the procedural model that significantly accelerates optimization. In ADPM the procedural model is always available, all changes are non‐destructive, and the user can interactively model the 3D object while keeping the procedural representation. ADPM provides the user with precise control over the resulting model comparable to non‐procedural interactive modeling. ADPM is node‐based, and it generates hierarchical 3D scene geometry converted to a differentiable computational graph. Our formulation focuses on the differentiability of high‐level primitives and bounding volumes of components of the procedural model rather than the detailed mesh geometry. Although this high‐level formulation limits the expressiveness of user edits, it allows for efficient derivative computation and enables interactivity. We designed a new optimizer to solve for inverse procedural modeling. It can detect that an edit is under‐determined and has degrees of freedom. Leveraging cheap derivative evaluation, it can explore the region of optimality of edits and suggest various configurations, all of which achieve the requested edit differently. We show our system's efficiency on several examples, and we validate it by a user study.more » « less
-
A deep learning aided optimization algorithm for the design of flat thin-film multilayer optical systems is developed. The authors introduce a deep generative neural network, based on a variational autoencoder, to perform the optimization of photonic devices. This algorithm allows one to find a near-optimal solution to the inverse design problem of creating an anti-reflective grating, a fundamental problem in material science. As a proof of concept, the authors demonstrate the method’s capabilities for designing an anti-reflective flat thin-film stack consisting of multiple material types. We designed and constructed a dielectric stack on silicon that exhibits an average reflection of 1.52 %, which is lower than other recently published experiments in the engineering and physics literature. In addition to its superior performance, the computational cost of our algorithm based on the deep generative model is much lower than traditional nonlinear optimization algorithms. These results demonstrate that advanced concepts in deep learning can drive the capabilities of inverse design algorithms for photonics. In addition, the authors develop an accurate regression model using deep active learning to predict the total reflectivity for a given optical system. The surrogate model of the governing partial differential equations can then be broadly used in the design of optical systems and to rapidly evaluate their behavior.more » « less
-
J.A. Ekaterinaris (Ed.)This paper describes a methodology for designing the material distribution and orientation of three-dimensional non-uniform (heterogeneous) lattice structures. Recent advances in additive manufacturing enable fabrication across multiple length scales. Homogenization-based design optimization and the subsequent projection of the optimized design facilitate the synthesis of large-scale microstructures that form lightweight bionic designs. The main aspects of this research are (a) the construction, homogenization-based optimization, and projection of two types of lattices with different degrees of anisotropy and (b) the parallelization of the analysis, optimization, and projection framework in order to handle large-scale meshes and obtain high-resolution, heterogeneous lattice structures. Cubic and octet-truss lattices were selected to demonstrate the ability of the framework to design different types of lattices. A quadcopter arm and an internal wing structure were designed using the optimization and projection framework, verifying its capability to synthesize heterogeneous lattice structures for complex design domains. The ability to change the complexity of optimized microlattices using the characteristic parameters of the lattice is discussed. The relationship between the lattice anisotropy and the optimized, smoothed orientation is investigated, and the optimized design for each lattice is compared with those obtained using conventional design optimization procedures.more » « less
An official website of the United States government
