skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 14, 2026

Title: Multiple domains of scaffold Tudor protein play nonredundant roles in Drosophila germline
Scaffold proteins play crucial roles in subcellular organization and function. In many organisms, proteins with multiple Tudor domains are required for the assembly of membraneless RNA–protein organelles (germ granules) in germ cells. Tudor domains are protein–protein interaction modules which bind to methylated polypeptides.DrosophilaTudor protein contains 11 Tudor domains, which is the highest number known in a single protein. The role of each of these domains in germ cell formation has not been systematically tested, and it is not clear if some domains are functionally redundant. Using CRISPR methodology, we generated mutations in several uncharacterized Tudor domains and showed that they all caused defects in germ cell formation. Mutations in individual domains affected Tudor protein differently, causing reduction in protein levels and defects in subcellular localization and in the assembly of germ granules. Our data suggest that multiple domains of Tudor protein are all needed for efficient germ cell formation, highlighting the rational for keeping many Tudor domains in protein scaffolds of biomolecular condensates inDrosophilaand other organisms.  more » « less
Award ID(s):
2130162
PAR ID:
10615409
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
EMBO Press, Rockefeller University Press, and Cold Spring Harbor Laboratory Press
Date Published:
Journal Name:
Life Science Alliance
Volume:
8
Issue:
10
ISSN:
2575-1077
Page Range / eLocation ID:
e202503304
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Scaffold proteins play crucial roles in subcellular organization and function. In many organisms, proteins with multiple Tudor domains are required for the assembly of membraneless RNA-protein organelles (germ granules) in germ cells. Tudor domains are protein-protein interaction modules which bind to methylated polypeptides.DrosophilaTudor protein contains eleven Tudor domains, which is the highest number known in a single protein. The role of each of these domains in germ cell formation has not been systematically tested and it is not clear if some domains are functionally redundant. Using CRISPR methodology, we generated mutations in several uncharacterized Tudor domains and showed that they all caused defects in germ cell formation. Mutations in individual domains affected Tudor protein differently causing reduction in protein levels, defects in subcellular localization and in the assembly of germ granules. Our data suggest that multiple domains of Tudor protein are all needed for efficient germ cell formation highlighting the rational for keeping many Tudor domains in protein scaffolds of biomolecular condensates inDrosophilaand other organisms. 
    more » « less
  2. The assembly of large RNA-protein granules occurs in germ cells of many animals and these germ granules have provided a paradigm to study structure-functional aspects of similar structures in different cells. Germ granules in Drosophila oocyte’s posterior pole (polar granules) are composed of RNA, in the form of homotypic clusters, and proteins required for germline development. In the granules, Piwi protein Aubergine binds to a scaffold protein Tudor, which contains 11 Tudor domains. Using a super-resolution microscopy, we show that surprisingly, Aubergine and Tudor form distinct clusters within the same polar granules in early Drosophila embryos. These clusters partially overlap and, after germ cells form, they transition into spherical granules with the structural organization unexpected from these interacting proteins: Aubergine shell around the Tudor core. Consistent with the formation of distinct clusters, we show that Aubergine forms homo-oligomers and using all purified Tudor domains, we demonstrate that multiple domains, distributed along the entire Tudor structure, interact with Aubergine. Our data suggest that in polar granules, Aubergine and Tudor are assembled into distinct phases, partially mixed at their “interaction hubs”, and that association of distinct protein clusters may be an evolutionarily conserved mechanism for the assembly of germ granules. 
    more » « less
  3. Membraneless organelles are RNA–protein assemblies which have been implicated in post‐transcriptional control. Germ cells form membraneless organelles referred to as germ granules, which contain conserved proteins including Tudor domain‐containing scaffold polypeptides and their partner proteins that interact with Tudor domains. Here, we show that inDrosophila, different germ granule proteins associate with the multi‐domain Tudor protein using different numbers of Tudor domains. Furthermore, these proteins compete for interaction with Tudorin vitroand, surprisingly, partition to distinct and poorly overlapping clusters in germ granulesin vivo. This partition results in minimization of the competition. Our data suggest that Tudor forms structurally different configurations with different partner proteins which dictate different biophysical properties and phase separation parameters within the same granule. 
    more » « less
  4. null (Ed.)
    Abstract Membraneless RNA-protein granules play important roles in many different cell types and organisms. In particular, granules found in germ cells have been used as a paradigm to study large and dynamic granules. These germ granules contain RNA and proteins required for germline development. Here, we unexpectedly identify large granules in specific subtypes of glial cells (“glial granules”) of the adult Drosophila brain which contain polypeptides with previously characterized roles in germ cells including scaffold Tudor, Vasa, Polar granule component and Piwi family proteins. Interestingly, our super-resolution microscopy analysis shows that in the glial granules, these proteins form distinct partially overlapping clusters. Furthermore, we show that glial granule scaffold protein Tudor functions in silencing of transposable elements and in small regulatory piRNA biogenesis. Remarkably, our data indicate that the adult brain contains a small population of cells, which express both neuroblast and germ cell proteins. These distinct cells are evolutionarily conserved and expand during aging suggesting the existence of age-dependent signaling. Our work uncovers previously unknown glial granules and indicates the involvement of their components in the regulation of brain transcriptome. 
    more » « less
  5. ABSTRACT GLH/Vasa/DDX4 helicases are core germ-granule proteins that promote germline development and fertility. A yeast-two-hybrid screen using Caenorhabditis elegans GLH-1 as bait identified BYN-1, the homolog of human bystin/BYSL. In humans, bystin promotes cell adhesion and invasion in gliomas, and, with its binding partner trophinin, triggers embryonic implantation into the uterine wall. C. elegans embryos do not implant and lack a homolog of trophinin, but both trophinin and GLH-1 contain unique decapeptide phenylalanine-glycine (FG)-repeat domains. In germ cells, we find endogenous BYN-1 in the nucleolus, partitioned away from cytoplasmic germ granules. However, BYN-1 enters the cytoplasm during spermatogenesis to colocalize with GLH-1. Both proteins become deposited in residual bodies (RBs), which are then engulfed and cleared by the somatic gonad. We show that BYN-1 acts upstream of CED-1 to drive RB engulfment, and that removal of the FG-repeat domains from GLH-1 and GLH-2 can partially phenocopy byn-1 defects in RB clearance. These results point to an evolutionarily conserved pathway whereby cellular uptake is triggered by the cytoplasmic mobilization of bystin/BYN-1 to interact with proteins harboring FG-repeats. 
    more » « less