We present a simple experiment developed for the advanced physics instructional laboratory to calculate the Mueller matrix of a microscopic sample. The Mueller matrix is obtained from intensity-based images of the sample acquired by a polarization-sensitive microscope. The experiment requires a bright-field microscope and standard polarizing optical components such as linear polarizers and waveplates. We provide a practical procedure for implementing the apparatus, measuring the complete Mueller matrix of linear polarizers used as samples, and discuss the possibility of analyzing biological samples using our apparatus and method. Due to the simplicity of the apparatus and method, this experiment allows students to increase their knowledge about light polarization and initiate their training in optical instrumentation.
more »
« less
This content will become publicly available on February 1, 2026
Determination of mid-infrared optical properties of complex media using partial Mueller matrix ellipsometry
Tailoring optical and radiative properties has attracted significant attention recently due to its importance in advanced energy systems, nanophotonics, electro-optics, and nanomanufacturing. Metamaterials with micro- and nanostructures exhibit exotic radiative properties with tunability across the spectrum, direction, and polarization. Structures made from anisotropic or nanostructured materials have shown polarization-selective absorption bands in the mid-infrared. Characterizing the optical and radiative properties of such materials is crucial for both fundamental research and the development of practical applications. Mueller matrix ellipsometry offers a nondestructive and noninvasive technique for characterizing radiative properties. Although such ellipsometers have long been used to measure optical properties, their operational bandwidth is usually limited to the visible to near-infrared range, leaving the mid-infrared largely unexplored. In this work, a broadband mid-infrared ellipsometer, operating from 2 to 15 μm, is designed and constructed to measure 12 elements of the Mueller matrix. The results may be used to determine the full Mueller matrix under specific conditions. The performance of the ellipsometer is evaluated using nanostructured materials, including a 1D grating and a chiral F-shaped metasurface. The measurement results compared well to those obtained from rigorous-coupled-wave analysis and finite-difference time-domain simulations, suggesting that this setup offers a useful tool in optical property retrieval and the assessment of nanostructured materials.
more »
« less
- Award ID(s):
- 2004749
- PAR ID:
- 10615420
- Publisher / Repository:
- AIP Publishing
- Date Published:
- Journal Name:
- Review of Scientific Instruments
- Volume:
- 96
- Issue:
- 2
- ISSN:
- 0034-6748
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper, we present a polarimetric image restoration approach that aims to recover the Stokes parameters and the degree of linear polarization from their corresponding degraded counterparts. The Stokes parameters and the degree of linear polarization are affected due to the degradations present in partial occlusion or turbid media, such as scattering, attenuation, and turbid water. The polarimetric image restoration with corresponding Mueller matrix estimation is performed using polarization-informed deep learning and 3D Integral imaging. An unsupervised image-to-image translation (UNIT) framework is utilized to obtain clean Stokes parameters from the degraded ones. Additionally, a multi-output convolutional neural network (CNN) based branch is used to predict the Mueller matrix estimate along with an estimate of the corresponding residue. The degree of linear polarization with the Mueller matrix estimate generates information regarding the characteristics of the underlying transmission media and the object under consideration. The approach has been evaluated under different environmentally degraded conditions, such as various levels of turbidity and partial occlusion. The 3D integral imaging reduces the effects of degradations in a turbid medium. The performance comparison between 3D and 2D imaging in varying scene conditions is provided. Experimental results suggest that the proposed approach is promising under the scene degradations considered. To the best of our knowledge, this is the first report on polarization-informed deep learning in 3D imaging, which attempts to recover the polarimetric information along with the corresponding Mueller matrix estimate in a degraded environment.more » « less
-
Metamaterials are artificially engineered structures that have unique properties not usually found in natural materials, such as negative refractive index. Conventional interferometry or ellipsometry is generally used for characterizing the optical properties of metamaterials. Here, we report an alternative optical vortex based interferometric approach for the characterization of the effective parameters of optical metamaterials by directly measuring the transmission and reflection phase shifts from metamaterials according to the rotation of vortex spiral interference pattern. The fishnet metamaterials possessing positive, zero and negative refractive indices are characterized with the vortex based interferometry to precisely determine the complex values of effective permittivity, permeability, and refractive index. Our results will pave the way for the advancement of new spectroscopic and interferometric techniques to characterize optical metamaterials, metasurfaces, and nanostructured thin films in general.more » « less
-
Electron paramagnetic resonance of Cr3+ ions in β-Ga2O3 is investigated using terahertz spectroscopic ellipsometry under magnetic field sweeping, a technique that enables the polarization resolving capabilities of ellipsometry for magnetic resonance measurements. We employed a single-crystal chromium-doped β-Ga2O3 sample, grown by the Czochralski method, and performed ellipsometry measurements at magnetic field strengths ranging from 2 to 8 T, at frequencies from 82 to 125 and 190 to 230 GHz, and at a temperature of 15 K. Analysis of the frequency-field diagrams derived from all Mueller matrix elements allowed us to differentiate between the effects of electron spin Zeeman splitting and zero-field splitting and to accurately determine the anisotropic Zeeman splitting g-tensor and the zero-field splitting parameters. Our results confirm that Cr3+ ions predominantly substitute into octahedral gallium sites. Line shape analysis of Mueller matrix element spectra using the Bloch–Brillouin model provides the spin volume concentration of Cr3+ sites, showing very good agreement with results from chemical analysis by inductively coupled plasma-optical emission spectroscopy and suggesting minimal occupation of sites with inactive electron paramagnetic resonance. This study enhances our understanding of the magnetic and electronic properties of chromium-doped β-Ga2O3 and demonstrates the effectiveness of high-frequency/high-field electron paramagnetic resonance generalized spectroscopic ellipsometry for characterizing defects in ultrawide-bandgap semiconductors.more » « less
-
Abstract This study delves into the polarization properties of various hair colors using several techniques, including polarization ray tracing, full Stokes, and Mueller matrix imaging. Our analysis involved studying hair in both indoor and outdoor settings under varying lighting conditions. Our results demonstrate a strong correlation between hair color and the degree of linear polarization. Specifically, light-colored hair, such as white and blond, exhibits high albedo and low DoLP. In contrast, dark hair, like black and brown hair, has low albedo and high DoLP. Our research also revealed that a single hair strand displays high diattenuation near specular reflections but high depolarization in areas with diffuse reflections. Additionally, we investigated the wavelength dependency of the polarization properties by comparing the Mueller matrix under illumination at 450 nm and 589 nm. Our investigation demonstrates the impact of hair shade and color on polarization properties and the Umov effect.more » « less
An official website of the United States government
