skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Black hole—neutron star binary mergers: the impact of stellar compactness
Abstract Recent gravitational wave (GW) observations include possible detections of black hole—neutron star binary mergers. As with binary black hole mergers, numerical simulations help characterize the sources. For binary systems with neutron star components, the simulations help to predict the imprint of tidal deformations and disruptions on the GW signals. In a previous study, we investigated how the mass of the black hole has an impact on the disruption of the neutron star and, as a consequence, on the shape of the GWs emitted. We extend these results to study the effects of varying the compactness of the neutron star. We consider neutron star compactness in the 0.113–0.2 range for binaries with mass ratios of 3 and 5. As the compactness and the mass ratio increase, the binary system behaves during the late inspiral and merger more like a black hole binary. For the cases with the least compact neutron star, the GWs emitted, in terms of mismatches, are the most distinguishable from those by a binary black hole. The disruption of the star significantly suppresses the kicks on the final black hole. The disruption also affects, although not dramatically, the spin of the final black hole. Lastly, for neutron stars with low compactness, the quasi-normal ringing of the black hole after the merger does not show a clean quasi-normal ringing because of the late accretion of debris from the neutron star.  more » « less
Award ID(s):
2207780
PAR ID:
10615465
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IOP
Date Published:
Journal Name:
Classical and Quantum Gravity
Volume:
41
Issue:
21
ISSN:
0264-9381
Page Range / eLocation ID:
215004
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Gravitational-wave (GW) detectors are observing compact object mergers from increasingly far distances, revealing the redshift evolution of the binary black hole (BBH)—and soon the black hole–neutron star (BHNS) and binary neutron star (BNS)—merger rate. To help interpret these observations, we investigate the expected redshift evolution of the compact object merger rate from the isolated binary evolution channel. We present a publicly available catalog of compact object mergers and their accompanying cosmological merger rates from population synthesis simulations conducted with the COMPAS software. To explore the impact of uncertainties in stellar and binary evolution, our simulations use two-parameter grids of binary evolution models that vary the common-envelope efficiency with mass transfer accretion efficiency and supernova (SN) remnant mass prescription with SN natal kick velocity, respectively. We quantify the redshift evolution of our simulated merger rates using the local (z∼ 0) rate, the redshift at which the merger rate peaks, and the normalized differential rates (as a proxy for slope). We find that although the local rates span a range of ∼103across our model variations, their redshift evolutions are remarkably similar for BBHs, BHNSs, and BNSs, with differentials typically within a factor 3 and peaks ofz≈ 1.2–2.4 across models. Furthermore, several trends in our simulated rates are correlated with the model parameters we explore. We conclude that future observations of the redshift evolution of the compact object merger rate can help constrain binary models for stellar evolution and GW formation channels. 
    more » « less
  2. ABSTRACT Precursors have been observed seconds to minutes before some short gamma-ray bursts. While the precursor origins remain unknown, one explanation relies on the resonance of neutron star pulsational modes with the tidal forces during the inspiral phase of a compact binary merger. In this paper, we present a model for short gamma-ray burst precursors that relies on tidally resonant neutron star oceans. In this scenario, the onset of tidal resonance in the crust–ocean interface mode ignites the precursor flare, possibly through the interaction between the excited neutron star ocean and the surface magnetic fields. From just the precursor total energy, the time before the main event, and a detected quasi-periodic oscillation frequency, we may constrain the binary parameters and neutron star ocean properties. Our model can immediately distinguish neutron star–black hole mergers from binary neutron star mergers without gravitational wave detection. We apply our model to GRB 211211A, the recently detected long duration short gamma-ray burst with a quasi-periodic precursor, and explore the parameters of this system. The precursor of GRB 211211A is consistent with a tidally resonant neutron star ocean explanation that requires an extreme mass ratio neutron star–black hole merger and a high-mass neutron star. While difficult to reconcile with the main gamma-ray burst and associated kilonova, our results constrain the possible precursor mechanisms in this system. A systematic study of short gamma-ray burst precursors with the model presented here can test precursor origin and probe the possible connection between gamma-ray bursts and neutron star–black hole mergers. 
    more » « less
  3. Abstract We search for gravitational-wave (GW) transients associated with fast radio bursts (FRBs) detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst Project, during the first part of the third observing run of Advanced LIGO and Advanced Virgo (2019 April 1 15:00 UTC–2019 October 1 15:00 UTC). Triggers from 22 FRBs were analyzed with a search that targets both binary neutron star (BNS) and neutron star–black hole (NSBH) mergers. A targeted search for generic GW transients was conducted on 40 FRBs. We find no significant evidence for a GW association in either search. Given the large uncertainties in the distances of our FRB sample, we are unable to exclude the possibility of a GW association. Assessing the volumetric event rates of both FRB and binary mergers, an association is limited to 15% of the FRB population for BNS mergers or 1% for NSBH mergers. We report 90% confidence lower bounds on the distance to each FRB for a range of GW progenitor models and set upper limits on the energy emitted through GWs for a range of emission scenarios. We find values of order 1051–1057erg for models with central GW frequencies in the range 70–3560 Hz. At the sensitivity of this search, we find these limits to be above the predicted GW emissions for the models considered. We also find no significant coincident detection of GWs with the repeater, FRB 20200120E, which is the closest known extragalactic FRB. 
    more » « less
  4. null (Ed.)
    Neutron stars (NSs) are extraordinary not only because they are the densest form of matter in the visible Universe but also because they can generate magnetic fields ten orders of magnitude larger than those currently constructed on earth. The combination of extreme gravity with the enormous electromagnetic (EM) fields gives rise to spectacular phenomena like those observed on August 2017 with the merger of a binary neutron star system, an event that generated a gravitational wave (GW) signal, a short γ-ray burst (sGRB), and a kilonova. This event serves as the highlight so far of the era of multimessenger astronomy. In this review, we present the current state of our theoretical understanding of compact binary mergers containing NSs as gleaned from the latest general relativistic magnetohydrodynamic simulations. Such mergers can lead to events like the one on August 2017, GW170817, and its EM counterparts, GRB 170817 and AT 2017gfo. In addition to exploring the GW emission from binary black hole-neutron star and neutron star-neutron star mergers, we also focus on their counterpart EM signals. In particular, we are interested in identifying the conditions under which a relativistic jet can be launched following these mergers. Such a jet is an essential feature of most sGRB models and provides the main conduit of energy from the central object to the outer radiation regions. Jet properties, including their lifetimes and Poynting luminosities, the effects of the initial magnetic field geometries and spins of the coalescing NSs, as well as their governing equation of state, are discussed. Lastly, we present our current understanding of how the Blandford-Znajek mechanism arises from merger remnants as the trigger for launching jets, if, when and how a horizon is necessary for this mechanism, and the possibility that it can turn on in magnetized neutron ergostars, which contain ergoregions, but no horizons. 
    more » « less
  5. Abstract Upcoming LIGO–Virgo–KAGRA (LVK) observing runs are expected to detect a variety of inspiralling gravitational-wave (GW) events that come from black hole and neutron star binary mergers. Detection of noninspiral GW sources is also anticipated. We report the discovery of a new class of noninspiral GW sources—the end states of massive stars—that can produce the brightest simulated stochastic GW burst signal in the LVK bands known to date, and could be detectable in LVK run A+. Some dying massive stars launch bipolar relativistic jets, which inflate a turbulent energetic bubble—cocoon—inside of the star. We simulate such a system using state-of-the-art 3D general relativistic magnetohydrodynamic simulations and show that these cocoons emit quasi-isotropic GW emission in the LVK band, ∼10–100 Hz, over a characteristic jet activity timescale ∼10–100 s. Our first-principles simulations show that jets exhibit a wobbling behavior, in which case cocoon-powered GWs might be detected already in LVK run A+, but it is more likely that these GWs will be detected by the third-generation GW detectors with an estimated rate of ∼10 events yr −1 . The detection rate drops to ∼1% of that value if all jets were to feature a traditional axisymmetric structure instead of a wobble. Accompanied by electromagnetic emission from the energetic core-collapse supernova and the cocoon, we predict that collapsars are powerful multimessenger events. 
    more » « less