A<sc>bstract</sc> For any unitary conformal field theory in two dimensions with the central chargec, we prove that, if there is a nontrivial primary operator whose conformal dimension ∆ vanishes in some limit on the conformal manifold, the Zamolodchikov distancetto the limit is infinite, the approach to this limit is exponential ∆ = exp(−αt+O(1)), and the decay rate obeys the universal boundsc−1/2≤α≤ 1. In the limit, we also find that an infinite tower of primary operators emerges without a gap above the vacuum and that the conformal field theory becomes locally a tensor product of a sigma-model in the large radius limit and a compact theory. As a corollary, we establish a part of the Distance Conjecture about gravitational theories in three-dimensional anti-de Sitter space. In particular, our bounds onαindicate that the emergence of exponentially light states is inevitable as the moduli field corresponding totrolls beyond the Planck scale along the steepest path and that this phenomenon can begin already at the curvature scale of the bulk geometry. We also comment on implications of our bounds for gravity in asymptotically flat spacetime by taking the flat space limit and compare with the Sharpened Distance Conjecture. 
                        more » 
                        « less   
                    This content will become publicly available on March 1, 2026
                            
                            Scale and conformal invariance in 2d σ-models, with an application to $$\mathcal{N}$$ = 4 supersymmetry
                        
                    
    
            A<sc>bstract</sc> By adapting previously known arguments concerning Ricci flow and thec-theorem, we give a direct proof that in a two-dimensional sigma-model with compact target space, scale invariance implies conformal invariance in perturbation theory. This argument, which applies to a general sigma-model constructed with a target space metric andB-field, is in accord with a more general proof in the literature that applies to arbitrary two-dimensional quantum field theories. Models with extended supersymmetry and aB-field are known to provide interesting test cases for the relation between scale invariance and conformal invariance in sigma-model perturbation theory. We give examples showing that in such models, the obstructions to conformal invariance suggested by general arguments can actually occur in models with target spaces that are not compact or complete. Thus compactness of the target space, or at least a suitable condition of completeness, is necessary as well as sufficient to ensure that scale invariance implies conformal invariance in models of this type. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2207584
- PAR ID:
- 10615497
- Publisher / Repository:
- INSPIRE
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2025
- Issue:
- 3
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            A<sc>bstract</sc> An important problem in Quantum Field Theory (QFT) is to understand the structures of observables on spacetime manifolds of nontrivial topology. Such observables arise naturally when studying physical systems at finite temperature and/or finite volume and encode subtle properties of the underlying microscopic theory that are often obscure on the flat spacetime. Locality of the QFT implies that these observables can be constructed from more basic building blocks by cutting-and-gluing along a spatial slice, where a crucial ingredient is the Hilbert space on the spatial manifold. In Conformal Field Theory (CFT), thanks to the operator-state correspondence, we have a non-perturbative understanding of the Hilbert space on a spatial sphere. However it remains a challenge to consider more general spatial manifolds. Here we study CFTs in spacetime dimensionsd >2 on the spatial manifoldT2× ℝd−3which is one of the simplest manifolds beyond the spherical topology. We focus on the ground state in this Hilbert space and analyze universal properties of the ground state energy, also commonly known as the Casimir energy, which is a nontrivial function of the complex structure moduliτof the torus. The Casimir energy is subject to constraints from modular invariance on the torus which we spell out using PSL(2,ℤ) spectral theory. Moreover we derive a simple universal formula for the Casimir energy in the thin torus limit using the effective field theory (EFT) from Kaluza-Klein reduction of the CFT, with exponentially small corrections from worldline instantons. We illustrate our formula with explicit examples from well-known CFTs including the criticalO(N) model ind= 3 and holographic CFTs ind ≥3.more » « less
- 
            Abstract We show that for a generic conformal metric perturbation of a compact hyperbolic 3-manifold $$\Sigma $$ Σ with Betti number $$b_1$$ b 1 , the order of vanishing of the Ruelle zeta function at zero equals $$4-b_1$$ 4 - b 1 , while in the hyperbolic case it is equal to $$4-2b_1$$ 4 - 2 b 1 . This is in contrast to the 2-dimensional case where the order of vanishing is a topological invariant. The proof uses the microlocal approach to dynamical zeta functions, giving a geometric description of generalized Pollicott–Ruelle resonant differential forms at 0 in the hyperbolic case and using first variation for the perturbation. To show that the first variation is generically nonzero we introduce a new identity relating pushforwards of products of resonant and coresonant 2-forms on the sphere bundle $$S\Sigma $$ S Σ with harmonic 1-forms on $$\Sigma $$ Σ .more » « less
- 
            A<sc>bstract</sc> The Gepner model (2)4describes the sigma model of the Fermat quartic K3 surface. Moving through the nearby moduli space using conformal perturbation theory, we investigate how the conformal weights of its fields change at first and second order and find approximate minima. This serves as a toy model for a mechanism that could produce new chiral fields and possibly new nearby rational CFTs.more » « less
- 
            A<sc>bstract</sc> We study a surface defect in the free and criticalO(N) vector models, defined by adding a quadratic perturbation localized on a two-dimensional subspace of thed-dimensional CFT. We compute the beta function for the corresponding defect renormalization group (RG) flow, and provide evidence that at long distances the system flows to a nontrivial defect conformal field theory (DCFT). We use epsilon and largeNexpansions to compute several physical quantities in the DCFT, finding agreement across different expansion methods. We also compute the defect free energy, and check consistency with the so-calledb-theorem for RG flows on surface defects.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
