skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Interfacial Engineering of Conformal Titanium Oxide Nanofilms on Porous Carbon Supercapacitor Electrodes Via Atomic Layer Deposition
Atomic layer deposition (ALD) has been gaining in popularity as a powerful deposition technique and have been shown to be a promising interfacial engineering method to boost the electrochemical performance of supercapacitors, bridging the gap in energy density. In that regard, we developed an ALD technique to deposit titanium dioxide (TiO2) nanofilms onto porous activated carbon (AC) electrodes. This study focused on the critical aspects of the ALD process that were still unexplored by previous relevant works, including the effects of precursor pulse duration and film thickness on the complex porous structures of AC. In particular, these comprehensive investigations pave the way towards uniform distribution and excellent conformity of the TiO2 nanofilms across the AC surface. Moreover, the deposited films were found to be amorphous and resulted in increased amounts of oxygen-containing surface functional groups. The enhanced electrochemical behavior from the TiO2 nanofilms were found to be optimal at 60 ALD cycles with an estimated film thickness of 2.3 nm. The assembled supercapacitor device coated with this ALD technique exhibited higher specific capacitance compared to the bare AC. The key findings of this work provide the foundation of an effective strategy using ALD for fabricating new electrode materials for high-performance supercapacitors.  more » « less
Award ID(s):
2235385
PAR ID:
10615720
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Materials Research Society
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Typical titanium oxide (TiO2) films are transparent in the visible range, allowing for their index of refraction and thickness to be extracted by single-angle spectroscopic ellipsometry (SE) using a Cauchy model. However, TiO2 films grown by atomic layer deposition (ALD) from tetrakis(dimethylamino)titanium (IV) (TDMAT) and H2O at 350 °C absorb in the visible range due to the formation of Ti-O-N/Ti-N bonds. Single-angle SE is inadequate for extracting the optical constants of these films, as there are more unknowns (n, k, d) than measurable parameters (ψ, Δ). To overcome this limitation, we combined SE with transmission (T) measurements, a method known as SE + T. In the process, we developed an approach to prevent backside deposition on quartz substrates during ALD deposition. When applying a B-spline model to SE + T data, the film thicknesses on the quartz substrates closely matched those on companion Si samples measured via standard lithography. The resulting optical constants indicate a reduced refractive index, n, and increased extinction coefficient, k, when compared to purer TiO2 thin films deposited via a physical vapor deposition (PVD) method, reflecting the influence of nitrogen incorporation on the optical properties. 
    more » « less
  2. Cold spray additive manufacturing (CSAM) has gained significant attention for its rapid solid deposition capabilities. However, the presence of defects such as pores and voids limits its performance, particularly in electrochemical environments. In this study, a novel post-surface treatment, plasma electrolytic oxidation (PEO), was applied and investigated as a feasible solution to overcome these defects. Results demonstrated a successful PEO deposition on cold-sprayed 316L stainless steel (SS) due to the rapid formation and discharge of aluminate electrolytes along the surface. However, due to the severely strained and highly crystalline surface, the electric field that allows for the deposition of Al(OH)42 anions was reduced. As consequence, an uneven and rough deposition took place. Nonetheless, a successful Al2O3 film of 12.30 lm thickness was formed. Experimental tests were further conducted in simulated aqueous and biologicalbased solutions to test the electrochemical resistance of the deposit. Results reveal a noticeable enhancement in corrosion resistance for both solutions. This enhancement can be attributed to the ‘‘postponing’’ and ‘‘blocking’’ effect enabled by the Al2O3 film, which prevented the electrolyte solution from penetrating the CS surface. Collectively, these findings suggest that PEO is indeed a promising technique to mitigate the chemical degradation of CSAM’d 316L SS. 
    more » « less
  3. In area-selective processes, such as area-selective atomic layer deposition (AS-ALD), there is renewed interest in designing surface modification schemes allowing to tune the reactivity of the nongrowth (NG) substrates. Many efforts are directed toward small molecule inhibitors or atomic layers, which would modify selected surfaces to delay nucleation and provide NG properties in the target AS-ALD processes allowing for the manufacturing of smaller sized features than those produced with alternative approaches. Bromine termination of silicon surfaces, specifically Si(100) and Si(111), is evaluated as a potential pathway to design NG substrates for the deposition of metal oxides, and TiO2 (from cycles of sequential exposures of tetrakis-dimethylamido-titanium and water) is tested as a prototypical deposition material. Nucleation delays on the surfaces produced are comparable to those on H-terminated silicon that is commonly used as an NG substrate. However, the silicon surfaces produced by bromination are more stable, and even oxidation does not change their chemical reactivity substantially. Once the NG surface is eventually overgrown after a large number of ALD cycles, bromine remains at the interface between silicon and TiO2. The NG behavior of different crystal faces of silicon appears to be similar, albeit not identical, despite different arrangements and coverage of bromine atoms. 
    more » « less
  4. null (Ed.)
    Porous carbon films were generated by thermal treatment of polymer films made from poly(acrylonitrile-co-methyl acrylate)/polyethylene terephthalate (PAN/PET) blend. The precursor films were fabricated by a dip-coating process using PAN/PET solutions in hexafluoro-2-propanol (HFIP). A two-step process, including stabilization and carbonization, was employed to produce the carbon films. PET functioned as a pore former. Specifically, porous carbon films with thicknesses from 0.38–1.83 μm and pore diameters between 0.1–10 μm were obtained. The higher concentrations of PET in the PAN/PET mixture and the higher withdrawal speed during dip-coating caused the formation of larger pores. The thickness of the carbon films can be regulated using the withdrawal speed used in the dip-coating deposition. We determined that the deposition of the porous carbon film on graphite substrate significantly increases the value of the interfacial shear strength between graphite plates and thermoplastic PP. This study has shown the feasibility of fabrication of 3D porous carbon structure on the surface of carbon materials for increasing the interfacial strength. We expect that this approach can be employed for the fabrication of high-performance carbon fiber-thermoplastic composites. 
    more » « less
  5. ABSTRACT Compact-size kilohertz (kHz) AC-supercapacitors are being pursued for ripple current filtering and pulsed energy storage. However, their development is limited by a small areal capacitance density due to very thin electrode used for meeting frequency requirement. In our work, crosslinked carbon nanofiber aerogel (CCNFA) was investigated as freestanding electrode for kHz AC-supercapacitors with an areal capacitance density as large as 4.5 mF cm -2 at 120 Hz, 5-10 times larger than most reports. The CCNFA was obtained in a rapid plasma carbonization process of bacterial cellulose. The fabrication route adopted here is simple and straightforward, and the produced CCNFA electrode was found to be very suitable for high-frequency AC-supercapacitors. The operating voltage range of CCNFA based AC-supercapacitors can be expanded to 3 V by utilizing an organic electrolyte. In addition to AC-Supercapacitor performance, the morphology and material properties of bacterial cellulose aerogel and CCNFA were also reported. 
    more » « less