Abstract An ultra‐fast electrochemical capacitor (EC) designed for efficient ripple current smoothing was fabricated using vertically oriented MoS2(VOM) nanoflakes deposited on freestanding carbonized cellulose (CC) sheets as electrodes. The daily used cellulose tissue sheets were transformed into electrode scaffolds through a rapid pyrolysis process within a preheated furnace, on which VOM nanoflakes were formed in a conventional hydrothermal process. With these ~10 μm thick VOM‐CC electrodes, ultrafast ECs with tunable frequency response and specific capacitance density were fabricated. The ECs with a cell‐level areal capacitance density of 0.8 mF/cm2at 120 Hz were demonstrated for ripple current filtering from 60 Hz to 60 kHz. At a lower frequency response level, EC cell with a large capacitance density of 4.8 mF/cm2was also demonstrated. With the facile and easily scaled up process to producing the nanostructured electrode, the miniaturized VOM‐CC based ECs have the potential to substitute the bulky aluminum electrolytic capacitors for current smoothing and pulse power applications. 
                        more » 
                        « less   
                    
                            
                            Carbon Nanofiber Aerogel Converted from Bacterial Cellulose for Kilohertz AC-Supercapacitors
                        
                    
    
            ABSTRACT Compact-size kilohertz (kHz) AC-supercapacitors are being pursued for ripple current filtering and pulsed energy storage. However, their development is limited by a small areal capacitance density due to very thin electrode used for meeting frequency requirement. In our work, crosslinked carbon nanofiber aerogel (CCNFA) was investigated as freestanding electrode for kHz AC-supercapacitors with an areal capacitance density as large as 4.5 mF cm -2 at 120 Hz, 5-10 times larger than most reports. The CCNFA was obtained in a rapid plasma carbonization process of bacterial cellulose. The fabrication route adopted here is simple and straightforward, and the produced CCNFA electrode was found to be very suitable for high-frequency AC-supercapacitors. The operating voltage range of CCNFA based AC-supercapacitors can be expanded to 3 V by utilizing an organic electrolyte. In addition to AC-Supercapacitor performance, the morphology and material properties of bacterial cellulose aerogel and CCNFA were also reported. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1611060
- PAR ID:
- 10058968
- Date Published:
- Journal Name:
- MRS Advances
- Volume:
- 3
- Issue:
- 15-16
- ISSN:
- 2059-8521
- Page Range / eLocation ID:
- 855 to 860
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            There is a strong interest in increasing the frequency response of electrochemical capacitors (ECs) from typically less than 1 Hz to the hundreds or the kilo Hz range, so that such high-frequency ECs (HF-ECs) could replace conventional capacitors for AC line-frequency filtering and other capacitor applications. The development of such HF-ECs is hindered by their typically low capacitance density and operation voltage. Herein, by treating ZIF-67 particulate films in CH 4 /H 2 plasma, edge-oriented graphene (EOG) formed around the carbonized ZIF-67 particulate skeleton, and this EOG was coupled with carbon nanotubes (CNTs) that were grown with the aid of Co catalyst nanoparticles, which were generated by reducing the Co 2+ ions associated with ZIF in the plasma. Used as electrodes, these EOG/CNT/carbonized ZIF-67 composites exhibited a large electrode areal capacitance of 1.0 mF cm −2 and an excellent frequency response of −84° phase angle at 120 Hz in aqueous electrolyte cells, whereas values of 0.67 mF cm −2 and −78° for the electrode areal capacitance and the phase angle at 120 Hz, respectively, were obtained in organic electrolyte cells with the operation voltage of 2.5 V. Using three pairs of electrodes stacked together, a single integrated cell operating at 7.5 V and having a characteristic frequency of ∼3.8 kHz at −45° phase angle, was demonstrated. These results suggest the potential to use this EOG/CNT/carbonized ZIF-67 composite structure for developing HF-ECs.more » « less
- 
            Abstract Electrochemical capacitors (ECs) offer superior specific capacitance for energy storage compared to traditional electrolytic capacitors but face limitations in alternating current (AC) filtering due to the need for balancing fast response and high capacitance. This study addresses these challenges by developing a freestanding nanostructured carbon electrode, derived from the rapid carbonization of bacterial cellulose (BC) embedded with zeolitic imidazolate framework 8 (ZIF‐8) and in situ formed carbon nanotubes (CNTs). The electrode exhibits an exceptionally low area resistance of 9.8 mΩ cm2and a high specific capacitance of 2.1 mF cm−2at 120 Hz, maintaining performance even at high frequencies. Stacking these electrodes enhances the capacitance to 5.3 mF cm−2, with the phase angle degrading to −74.4° at 120 Hz; however, they retain a phase angle below −45° up to ≈50 kHz, demonstrating excellent high‐frequency performance. Furthermore, connecting three aqueous units in series as an integrated cell or utilizing organic electrolytes extends the voltage window to 2.4 V, enhancing their suitability for high‐voltage applications. Ripple voltage analysis under various loads and frequencies indicates effective filtering capabilities, highlighting the potential of these nanostructured ECs for next‐generation electronic applications.more » « less
- 
            In this study, we synthesized carbyne by a simple chemical route and then this was coated on nickel foam. On this carbyne coated nickel foam, FeCo2O4 was grown by the solvothermal process to serve as a nanohybrid electrode for supercapacitor applications. This nanohybrid electrode has shown high specific capacitance due to the large surface area, high electrical conductivity and improved rate characteristics. The specific capacitance of FeCo2O4 @ Carbyne nanohybrid electrode was about 2584.8 Fg-1 at the current density of 3 Ag-1. Furthermore, the asymmetric supercapacitor device integrated with FeCo2O4 @ Carbyne and activated carbon (FeCo2O4 @ Carbyne || AC) shows better performance with an energy density of about 96.59 WhKg-1 at a high-power density of 2.25 kW kg-1 with a capacitance decay of about 14.52 % even at 5000 cycles. These outcomes provide a new approach for the development of supercapacitors with superior characteristics.more » « less
- 
            The realization of biomass‐derived supercapacitors of high performance is of practical importance for the manufacturing of supercapacitors from green and renewable sources. Herein, the feasibility of constructing high‐performance supercapacitors from potato‐derived activated carbon (AC) is demonstrated. The potato‐derived AC is produced from potato mash through hydrothermal treatment and high‐temperature activation with KOH as agent. The supercapacitors with aqueous electrolyte of 6 mKOH and a mass loading of 5 mg per electrode achieve a specific gravimetric capacitance of 333.7 F g−1per electrode and a specific energy of 11.75 W h g−1at a specific power of 197.6 W kg−1at a current density of 0.4 A g−1under a nominal compressive stress of 7.96 MPa. The supercapacitors with a mass loading of 10 mg per electrode achieve the maximum specific gravimetric capacitance of 340.6 F g−1and a specific energy of 11.75 W h g−1at a specific power of 194.2 W kg−1at a current density of 0.4 A g−1under a nominal compressive stress of 7.96 MPa. Increasing the compaction of electrode materials under compressive stress has the potential to increase the electrochemical performance of supercapacitors.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    