skip to main content

Title: Fabrication of Porous Carbon Films and Their Impact on Carbon/Polypropylene Interfacial Bonding
Porous carbon films were generated by thermal treatment of polymer films made from poly(acrylonitrile-co-methyl acrylate)/polyethylene terephthalate (PAN/PET) blend. The precursor films were fabricated by a dip-coating process using PAN/PET solutions in hexafluoro-2-propanol (HFIP). A two-step process, including stabilization and carbonization, was employed to produce the carbon films. PET functioned as a pore former. Specifically, porous carbon films with thicknesses from 0.38–1.83 μm and pore diameters between 0.1–10 μm were obtained. The higher concentrations of PET in the PAN/PET mixture and the higher withdrawal speed during dip-coating caused the formation of larger pores. The thickness of the carbon films can be regulated using the withdrawal speed used in the dip-coating deposition. We determined that the deposition of the porous carbon film on graphite substrate significantly increases the value of the interfacial shear strength between graphite plates and thermoplastic PP. This study has shown the feasibility of fabrication of 3D porous carbon structure on the surface of carbon materials for increasing the interfacial strength. We expect that this approach can be employed for the fabrication of high-performance carbon fiber-thermoplastic composites.
Authors:
; ; ;
Award ID(s):
1655740
Publication Date:
NSF-PAR ID:
10228900
Journal Name:
Journal of Composites Science
Volume:
5
Issue:
4
Page Range or eLocation-ID:
108
ISSN:
2504-477X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This work seeks to develop a fundamental understanding of slot-die coating as a nanoparticle bed deposition mechanism for a microscale selective laser sintering (μ-SLS) process. The specific requirements of the μ-SLS process to deposit uniform sub-5 μm metal nanoparticle films while enabling high throughput fabrication make the slot-die coating process a strong candidate for layer-by-layer deposition. The key challenges of a coating system are to enable uniform nanoparticle ink deposition in an intermittent layer-by-layer manner. Identifying the experimental parameters to achieve this using a slot-die coating process is difficult. Therefore, the main contribution of this study is to develop a framework to predict the wet film thickness and onset of coating defects by simulating the experimental conditions of the μ-SLS process. The single-layer deposition characteristics and the operational window for the slot-die coating setup have been investigated through experiments and two-dimensional computational fluid dynamics simulations. The effect of coating parameters such as inlet speed, coating speed, and coating gap on the wet film thickness has been analyzed. For inlet speeds higher than the coating speed, it was found that the meniscus was susceptible to high instabilities leading to coating defects. Additionally, the study outlines the conditions for which the stabilitymore »of the menisci upstream and downstream of the slot-die coater can affect the uniformity and thickness range of the coating.« less
  2. Abstract

    Geological storage of carbon dioxide (CO2) in depleted gas reservoirs represents a cost-effective solution to mitigate global carbon emissions. The surface chemistry of the reservoir rock, pressure, temperature, and moisture content are critical factors that determine the CO2 adsorption capacity and storage mechanisms. Shale-gas reservoirs are good candidates for this application. However, the interactions of CO2 and organic content still need further investigation. The objectives of this paper are to (i) experimentally investigate the effect of pressure and temperature on the CO2 adsorption capacity of activated carbon, (ii) quantify the nanoscale interfacial interactions between CO2 and the activated carbon surface using Monte Carlo molecular modeling, and (iii) quantify the correlation between the adsorption isotherms of activated carbon-CO2 system and the actual carbon dioxide adsorption on shale-gas rock at different temperatures and geochemical conditions. Activated carbon is used as a proxy for kerogen. The objectives aim at obtaining a better understanding of the behavior of CO2 injection and storage into shale-gas formations.

    We performed experimental measurements and Grand Canonical Monte Carlo (GCMC) simulations of CO2 adsorption onto activated carbon. The experimental work involved measurements of the high-pressure adsorption capacity of activated carbon using pure CO2 gas. Subsequently, we performed amore »series of GCMC simulations to calculate CO2 adsorption capacity on activated carbon to validate the experimental results. The simulated activated carbon structure consists of graphite sheets with a distance between the sheets equal to the average actual pore size of the activated carbon sample. Adsorption isotherms were calculated and modeled for each temperature value at various pressures.

    The adsorption of CO2 on activated carbon is favorable from the energy and kinetic point of view. This is due to the presence of a wide micro to meso pore sizes that can accommodate a large amount of CO2 particles. The results of the experimental work show that excess adsorption results for gas mixtures lie in between the results for pure components. The simulation results agree with the experimental measurements. The strength of CO2 adsorption depends on both surface chemistry and pore size of activated carbon. Once strong adsorption sites within nanoscale network are established, gas adsorption even at very low pressure is governed by pore width rather than chemical composition. The outcomes of this paper provides new insights about the parameters affecting CO2 adsorption and storage in shale-gas reservoirs, which is critical for developing standalone representative models for CO2 adsorption on pure organic carbon.

    « less
  3. Despite the dramatic progress that has been made in the power-conversion efficiency (PCE) of perovskite solar cells (PVSCs), there are still many obstacles to be overcome before these devices can be economically competitive in the photovoltaics market. One of the major hurdles in the commercialization of PVSCs is low stability, which severely limits the effective lifetime of the devices. One of the approaches to achieving higher stability and lifetime of PVSCs is improvement of PVSC film quality. In this paper, we have employed a PAMAM dendrimer layer to reduce the surface roughness of sputter-deposited indium-tin oxide (ITO) films, which were then used in the fabrication of PVSCs. A PAMAM-8 dendrimer layer was deposited by dip-coating the substrates in 25 mL of a 1 μMPAMAM-8 ethanol solution before ITOdeposition. X-ray refractivity (XRR)was used to verify the PAMAMlayer on the substrate. ITOfilms of 150 nm thicknesswere then deposited onto the PAMAMlayer using DC magnetron reactive sputtering. The surface roughness, sheet resistance, and transmissivity of the ITO films were optimized by varying the parameters of the sputtering process. Atomic force microscopy (AFM) was used to measure the surface roughness of the ITO films with and without PAMAM dendrimer layer. A root-mean-square (RMS) filmmore »roughness of 1.6 nm, sheet resistance of 21 /ϒ, and transmissivity of > 91% at a wavelength of 400–700 nm were obtained after optimization.« less
  4. The objective of this paper is to predict the fiber/matrix interfacial debond strength in composites. Atomic force microscopy (AFM) images of the surface topography of a de-sized carbon fiber reveal that there are surface asperities present at various length scales ranging from a nanometer to several microns. These asperities are likely caused by shrinkage of the polyacrylonitrile (PAN) precursor during the graphitization process. In order to bridge the length scales, a Fourier series-decomposition covering a range of asperity wavelengths and amplitudes is necessary to effectively capture the roughness of the fiber surface at different length scales. Further, once a surface asperity profile has been resolved into individual subcomponents using Fourier-decomposition, MD simulations can then be employed to obtain the interfacial shear strength of the subcomponent asperity of a given amplitude and wavelength. Finally, by recombining the peak interfacial shear force obtained from each of these subcomponents into the overall shear force for the fiber surface profile, the length-scale -averaged shear strength can be obtained for any given asperity. The objective of this paper is to use this novel approach to determine the interfacial shear strength of de-sized carbon fiber embedded in an epoxy matrix and compare predicted results with experimentalmore »data.« less
  5. Unconventional shale or tight oil/gas reservoirs that have micro-/nano-sized dual-scale matrix pore throats with micro-fractures may result in different fluid flow mechanisms compared with conventional oil/gas reservoirs. Microfluidic models, as a potential powerful tool, have been used for decades for investigating fluid flow at the pore-scale in the energy field. However, almost all microfluidic models were fabricated by using etching methods and very few had dual-scale micro-/nanofluidic channels. Herein, we developed a lab-based, quick-processing and cost-effective fabrication method using a lift-off process combined with the anodic bonding method, which avoids the use of any etching methods. A dual-porosity matrix/micro-fracture pattern, which can mimic the topology of shale with random irregular grain shapes, was designed with the Voronoi algorithm. The pore channel width range is 3 μm to 10 μm for matrices and 100–200 μm for micro-fractures. Silicon is used as the material evaporated and deposited onto a glass wafer and then bonded with another glass wafer. The channel depth is the same (250 nm) as the deposited silicon thickness. By using an advanced confocal laser scanning microscopy (CLSM) system, we directly visualized the pore level flow within micro/nano dual-scale channels with fluorescent-dyed water and oil phases. We found a seriousmore »fingering phenomenon when water displaced oil in the conduits even if water has higher viscosity and the residual oil was distributed as different forms in the matrices, micro-fractures and conduits. We demonstrated that different matrix/micro-fracture/macro-fracture geometries would cause different flow patterns that affect the oil recovery consequently. Taking advantage of such a micro/nano dual-scale ‘shale-like’ microfluidic model fabricated by a much simpler and lower-cost method, studies on complex fluid flow behavior within shale or other tight heterogeneous porous media would be significantly beneficial.« less